Recent Advances in IPv6 Security

Fernando Gont

SecTor 2012
Toronto, Canada. October 2-3, 2012
About...

- Security researcher and consultant at SI6 Networks
- Have worked on security assessment on communications protocols for:
 - UK NISCC (National Infrastructure Security Co-ordination Centre)
 - UK CPNI (Centre for the Protection of National Infrastructure)
- Active participant at the IETF (Internet Engineering Task Force)
Agenda

• Disclaimer
• Motivation for this presentation
• Recent Advances in IPv6 Security
 • IPv6 Addressing
 • IPv6 Fragmentation & Reassembly
 • IPv6 First Hop Security
 • IPv6 Firewalling
 • Mitigation to some Denial of Service attacks
• Conclusions
• Questions and Answers
Disclaimer

- This talks assumes:
 - You know the basics of IPv4 security
 - You now the basics about IPv6 security
 - (i.e. I'm not doing an “IPv6 primer” in this presentation, sorry)
- Much of this is “work in progress” → your input is welcome!
- No “0-days”, sorry.
Motivation for this presentation
Motivation for this presentation

- Sooner or later you will need to deploy IPv6
 - In fact, you have (at least) partially deployed it, already
- IPv6 represents a number of challenges: What can we do about them?

Option #1

Option #2

Option #3

Suicide is always an option
Motivation for this presentation (II)

- We have been doing a fair share of IPv6 security research
 - Identification of problems
 - Proposals to mitigate those problems
 - Production of IPv6 security assessment tools
- Almost everything available at: http://www.si6networks.com
- Part of our research has been taken to the IETF
- This talk is about our ongoing work to improve IPv6 security
Advances in IPv6 Addressing
Brief overview

- Main driver for IPv6 deployment
- Employs 128-bit addresses
- Address semantics similar to those of IPv4:
 - Addresses are aggregated into "prefixes"
 - Several address types
 - Several address scopes
- Each interface typically employs more than one address, of different type/scope:
 - One link-local unicast address
 - One or more global unicast addresses
 - etc.
Global Unicast Addresses

<table>
<thead>
<tr>
<th>n bits</th>
<th>m bits</th>
<th>128-n-m bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Routing Prefix</td>
<td>Subnet ID</td>
<td>Interface ID</td>
</tr>
</tbody>
</table>

- The “Interface ID” is typically 64-bit long
- Can be selected with different criteria:
 - Modified EUI-64 Identifiers
 - Privacy addresses
 - Manually configured
 - As specified by transition/co-existence technologies
IPv6 Addressing
Implications on remote address scanning attacks
IPv6 remote address scanning attacks

“Thanks to the increased IPv6 address space, IPv6 host scanning attacks are unfeasible. Scanning a /64 would take 500,000,000 years”

– Urban legend

Is the search space for a /64 really 2^{64} addresses?
IPv6 addresses in the real world

- Malone measured (*) the address generation policy of hosts and routers in real networks

<table>
<thead>
<tr>
<th>Address type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAAC</td>
<td>50%</td>
</tr>
<tr>
<td>IPv4-based</td>
<td>20%</td>
</tr>
<tr>
<td>Teredo</td>
<td>10%</td>
</tr>
<tr>
<td>Low-byte</td>
<td>8%</td>
</tr>
<tr>
<td>Privacy</td>
<td>6%</td>
</tr>
<tr>
<td>Wordy</td>
<td><1%</td>
</tr>
<tr>
<td>Others</td>
<td><1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-byte</td>
<td>70%</td>
</tr>
<tr>
<td>IPv4-based</td>
<td>5%</td>
</tr>
<tr>
<td>SLAAC</td>
<td>1%</td>
</tr>
<tr>
<td>Wordy</td>
<td><1%</td>
</tr>
<tr>
<td>Privacy</td>
<td><1%</td>
</tr>
<tr>
<td>Teredo</td>
<td><1%</td>
</tr>
<tr>
<td>Others</td>
<td><1%</td>
</tr>
</tbody>
</table>

IPv6 addresses embedding IEEE IDs

<table>
<thead>
<tr>
<th>24 bits</th>
<th>16 bits</th>
<th>24 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE OUI</td>
<td>FF FE</td>
<td>Lower 24 bits of MAC</td>
</tr>
</tbody>
</table>

- Known or guessable
- Known
- Unknown

- In practice, the search space is at most \(2^{24}\) bits – **feasible**!
- The low-order 24-bits are not necessarily random:
 - An organization buys a large number of boxes
 - In that case, MAC addresses are usually consecutive
 - Consecutive MAC addresses are generally in use in geographically-close locations
IPv6 addresses embedding IEEE IDs (II)

- Virtualization technologies present an interesting case
- Virtual Box employs OUI 08:00:27 (search space: \(\sim 2^{24}\))
- VMWare ESX employs:
 - Automatic MACs: OUI 00:05:59, and next 16 bits copied from the low order 16 bits of the host's IPv4 address (search space: \(\sim 2^8\))
 - Manually-configured MACs: OUI 00:50:56 and the rest in the range 0x000000-0x3fffff (search space: \(\sim 2^{22}\))
IPv6 addresses embedding IPv4 addr.

- They simply embed an IPv4 address in the IID
 - e.g.: 2000:db8::192.168.0.1
- Search space: same as the IPv4 search space
IPv6 “low-byte” addresses

- The IID is set to all-zeros, except for the last byte
 - e.g.: 2000:db8::1
 - There are other variants
- Search space: usually 2^8 or 2^{16}
Industry mitigations for scanning attacks

- Microsoft replaced the MAC-address-based identifiers with (non-standard) randomized IIDs
 - Essentially RFC 4941, but they don’t vary over time
- Certainly better than MAC-address-based IIDs, but still not “good enough”
- They mitigate host-scanning, but not host tracking – constant IIDs are still present!
Thoughts on remote scanning attacks

- IPv6 host scanning attacks are \textit{feasible}, but typically harder than in IPv4
- They require more “intelligence” on the side of the attacker
- It is \textit{possible} to make them infeasible
- It is likely that many other scanning strategies/techniques will be explored
IPv6 Addressing
Implications on privacy
Problem statement

- Modified EUI-64 IIDs are constant for each interface
- As the host moves, the prefix changes, but the IID doesn't
 - the 64-bit IID results in a super-cookie!
- This introduces a problem not present in IPv4: host-tracking
- Example:
 - In net #1, host configures address: 2001:db8:1::1111:2222:3333:4444
 - In net #2, host configures address: 2001:db8:2::1111:2222:3333:4444
 - The IID “1111:2222:3333:4444” leaks out host “identity”.
“Mitigation” to host-tracking

- RFC 4941: privacy/temporary addresses
 - Random IIDs that change over time
 - Generated in addition to traditional SLAAC addresses
 - Traditional addresses used for server-like communications, temporary addresses for client-like communications

- Operational problems:
 - Makes event correlation very difficult!
 - We have helped with that, though: http://www.si6networks.com/tools

- Security problems:
 - They mitigate host-tracking only partially
 - They do not mitigate address-scanning attacks
IPv6 addressing
Mitigating scanning and privacy issues
Auto-configuration address/ID types

- We lack stable privacy-enhanced IPv6 addresses
 - Used to replace IEEE ID-derived addresses
 - Pretty much orthogonal to privacy addresses
 - Probably “good enough” in most cases even without RFC 4941

<table>
<thead>
<tr>
<th></th>
<th>Stable</th>
<th>Temporary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictable</td>
<td>IEEE ID-derived</td>
<td>None</td>
</tr>
<tr>
<td>Unpredictable</td>
<td>NONE</td>
<td>RFC 4941</td>
</tr>
</tbody>
</table>
Stable privacy-enhanced addresses

- draft-ietf-6man-stable-privacy-addresses proposes to generate Interface IDs as:
 \[F(\text{Prefix, Interface_Index, Network_ID, Secret_Key}) \]
- Where:
 - \(F() \) is a PRF (e.g., a hash function)
 - Prefix SLAAC or link-local prefix
 - Interface_Index is the (internal) small number that identifies the interface
 - Network_ID could be e.g. the SSID of a wireless network
 - Secret_Key is unknown to the attacker (and randomly generated by default)
Stable privacy-enhanced addresses (II)

- As a host moves:
 - Prefix and Network_ID change from one network to another
 - But they remain constant within each network
 - F() varies across networks, but remains constant within each network
- This results in addresses that:
 - Are stable within the same subnet
 - Have different Interface-IDs when moving across networks
 - For the most part, they have “the best of both worlds”
- Document already accepted as a 6man wg item
IPv6 Fragmentation and Reassembly
IPv6 fragmentation

- IPv6 fragmentation performed only by hosts (never by routers)
- Fragmentation support implemented in “Fragmentation Header”
- Fragmentation Header syntax:

```
|   8 bits     |     8 bits     |        13 bits         | 2b |1b|
|              | Reserved       | Fragment Offset        | Res| M |
| Identification |
```
Fragment Identification

- Security Implications of predictable Fragment IDs well-known from the IPv4 world
 - idle-scanning, DoS attacks, etc.
- Amount of fragmented traffic will probably increase as a result of:
 - Larger addresses
 - DNSSEC
- But no worries, since we learned the lesson from the IPv4 world... – right?
Fragment ID generation policies

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeBSD 9.0</td>
<td>Randomized</td>
</tr>
<tr>
<td>NetBSD 5.1</td>
<td>Randomized</td>
</tr>
<tr>
<td>OpenBSD-current</td>
<td>Randomized (based on SKIPJACK)</td>
</tr>
<tr>
<td>Linux 3.0.0-15</td>
<td>Predictable (GC init. to 0, incr. by +1)</td>
</tr>
<tr>
<td>Linux-current</td>
<td>Unpredictable (PDC init. to random value)</td>
</tr>
<tr>
<td>Solaris 10</td>
<td>Predictable (PDC, init. to 0)</td>
</tr>
<tr>
<td>Windows 7 Home Prem.</td>
<td>Predictable (GC, init. to 0, incr. by +2)</td>
</tr>
</tbody>
</table>

GC: Global Counter
PDC: Per-Destination Counter

At least Solaris and Linux patched in response to our IETF I-D – more patches expected!
Fixing predictable Fragment IDs

- **draft-gont-6man-predictable-fragment-id:**
 - Discussed the security implications of predictable Fragment ID
 - Proposes a number of algorithms to generate the Fragment ID

- **Ongoing work at the 6man wg**
 - Has not yet been adopted by the 6man working group
IPv6 Fragment Reassembly

- Security implications of overlapping fragments well-known (think Ptacek & Newsham, etc.)
- Nonsensical for IPv6, but originally allowed in the specs
- Different implementations allow them, with different results
- RFC 5722 updated the specs, forbidding overlapping fragments
- Most current implementations reflect the updated standard
- See http://blog.si6networks.com
IPv6 “atomic” fragments

- ICMPv6 PTB < 1280 triggers inclusion of a FH in all packets to that destination (not actual fragmentation)
- Result: IPv6 atomic fragments (Frag. Offset=0, More Frag.=0)
Issues with IPv6 atomic fragments

- Some implementations mix “atomic fragments” with queued fragments
- Atomic fragments thus become subject of IPv6 fragmentation attacks
- How to leverage this issue:
 - Trigger atomic fragments with ICMPv6 PTB messages
 - Now perform IPv6 fragmentation-based attacks
Mitigating issues with atomic fragments

- draft-ietf-6man-ipv6-atomic-fragments fixes the problem:
 - IPv6 atomic fragments required to be processed as non-fragmented traffic
- Document has passed WGLC
 - Should be published as an RFC soon
Handling of IPv6 atomic fragments

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Atomic Frag. Support</th>
<th>Improved processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeBSD 8.2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FreeBSD 9.0</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Linux 3.0.0-15</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NetBSD 5.1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NetBSD-current</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>OpenBSD-current</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Solaris 11</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Windows Vista (build 6000)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Windows 7 Home Premium</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

At least OpenBSD and NetBSD patched in response to our IETF I-D – more patches expected!
IPv6 First Hop Security
IPv6 First Hop Security

- Security mechanisms/policies employed/enforced at the first hop (local network)
- Fundamental problem: lack of feature-parity with IPv4
 - arpwatch-like Neighbor Discovery monitoring virtually impossible
 - DHCP-snooping-like RA blocking trivial to circumvent
IPv6 First Hop Security (II)

- Fundamental problem: complexity of traffic to be “processed at layer-2”
- Example:
Bringing “sanity” to ND traffic

- draft-ietf-6man-nd-extension-headers forbids use of fragmentation with Neighbor Discovery
 - It makes ND monitoring feasible
 - Turns out it is vital for SEND (or SEND could be DoS'ed with fragments)

- Work in progress:
 - Has been adopted as a 6man wg item
 - Should be published as an RFC “shortly”
RA-Guard

- Meant to block RA packets on “unauthorized” switch ports
- Existing implementations trivial to circumvent
- draft-ietf-v6ops-ra-guard-implementation contains:
 - Discussion of RA-Guard evasion techniques
 - Advice to filter RAs, while avoiding false positives
- Can only be evaded with overlapping fragments
 - But most current OSes forbid them
 - And anyway there's nothing we can do about this :-)
- Should be published as an RFC soon.
IPv6 firewalling
Problem statement

- Specs-wise, state-less IPv6 packet filtering is impossible:
 - The IPv6 header chain can span multiple fragments
 - This makes state-less firewalling impossible
First step away from “insanity”

- draft-ietf-6man-oversized-header-chain fixes this problem:
 - The entire IPv6 header chain must be contained in the first fragment
 - i.e. packets with header chains that span more than one fragment may be blocked – don't send them!

- Work in progress:
 - Already adopted by the 6man WG
 - Should be published as an RFC “shortly”

- There's an insanely large amount of work to be done in the area of IPv6 firewalling
IPv6 implications on IPv4 networks
VPN leakages

• Typical scenario:
 • You connect to an insecure network
 • You establish a VPN with your home/office
 • Your VPN software does not support IPv6

• Trivial to trigger a VPN leakage
 • Spoof RA's or DHCPv6-server packets, to trigger IPv6 connectivity and set the recursive DNS server
 • Forge DNS responses for servers that are not dual stacked
 • Even legitimate dual-stacked networks may trigger this leakage inadvertently

• As always, deemed as “already known” by some
 • Yet most VPN clients are vulnerable, and nobody did anything about it
Tools
IPv6 security tools

- For ages, THC's IPv6 attack suite (http://www.thc.org) has been the only IPv6 security toolkit publicly available
- We've produced “SI6 Networks IPv6 toolkit”:
 - A brand-new security assessment/trouble-shooting toolkit
 - Runs on Linux, *BSD, and Mac OS
- Available at: http://www.si6networks.com/tools/ipv6toolkit
 - GIT repository at: https://github.com/fgont/ipv6-toolkit.git
SI6 Networks' IPv6 toolkit

- scan6: An IPv6 address scanner
- frag6: Play with IPv6 fragments
- tcp6: Play with IPv6-based TCP segments
- ns6: Play with Neighbor Solicitation messages
- na6: Play with Neighbor Advertisement messages
- rs6: Play with Router Solicitation messages
- ra6: Play with Router Advertisement messages
SI6 Networks' IPv6 toolkit (II)

- rd6: Play with Redirect messages
- icmp6: Play with ICMPv6 error messages
- ni6: Play with Node Information messages
- flow6: Play with the IPv6 Flow Label
- jumbo6: Play with IPv6 Jumbograms
- ... and there are more tools to come!
Some conclusions
Some conclusions

- Many IPv4 vulnerabilities have been re-implemented in IPv6
 - We just didn't learn the lesson from IPv4, or,
 - Different people working in IPv6 than working in IPv4, or,
 - The specs could make implementation more straightforward, or,
 - All of the above? :-)

- Still lots of work to be done in IPv6 security
 - We all know that there is room for improvements
 - We need IPv6, and should work to improve it
Questions?
Thanks!

Fernando Gont
fgont@si6networks.com

IPv6 Hackers mailing-list
http://www.si6networks.com/community/

www.si6networks.com