Security Implications of Network Address Translators (NATs) (draft-gont-behave-nat-security)

Fernando Gont
UTN/FRH

Pyda Srisuresh
Kazeon Systems, Inc.

73rd IETF meeting, November 16-21, 2008
Minneapolis, MN, USA
What motivated this document?

- Earlier this year, a number of vulnerabilities were found in popular DNS implementations.
- In order to exploit these vulnerabilities, an attacker had to guess the four-tuple \{source IP, Source port, Destination IP, Destination port\}.
- Some implementations were randomizing the ephemeral ports of their DNS requests, thus making it harder for an attacker to exploit these vulnerabilities.
- Yet sometimes these systems were behind a NAT:
 - The NAT would rewrite the source port of outgoing packets, using a global linear sequence.
 - As a result, this was as bad as if the end-systems were not doing port randomization in the first place.
Based on the aforementioned experience, we tried to analyze the security implications of NATs rewriting (or NOT rewriting!) each of the header fields of the involved protocols.

In many cases, there are **interoperability** implications if some header fields are not rewritten. Therefore, if they must be rewritten… why not do it in the right way?

Some issues have been discussed in detail in this first version of the document:

- Security implications arising from IP fragmentation
- DHCP-configured NATs
- Security implications of some header fields
Example of (not?) rewriting header fields (I)

- **Source port**
 - You don’t: Potential of interoperability problems (collision of connection-id’s)
 - You do it “wrong”: Easier to predict future connection-id’s

- **TCP Sequence numbers**
 - You don’t: Potential of data corruption
 - You do it “wrong”: Easy to predict future sequence numbers

- **TCP timestamps**
 - You don’t: Potential of data corruption or connection failures
 - You do it “wrong”: Easy to predict future values

- **IP Identification**
 - You don’t: Potential of data corruption (collision of IP ID’s), leaks out number of systems behind a NAT
 - You do it wrong: leaks information (e.g., packets transmitted)
Rewriting the source port

- RFC 5382 leaves this unspecified
- RFC 4787 states:
 - A NAT MUST NOT have a "Port assignment" behavior of "Port overloading"
 - It is RECOMMENDED that the port ranges (whether 0-1023 or 1024-65535) is respected
 - Applications must, therefore, be able to deal with both port preservation and no port preservation.
- Options:
 - Always randomize the source port?
 - Randomize the source port unless you are doing port preservation?
Feedback we’ve got so far…

- Much feedback from Dave Thaler, Dan Wing, and others.
- Rewriting the source port
 - There was some discussion on-list
 - Question: Does it still really make sense to do port preservation?
 - Possible outcome: Randomize the source port unless you are doing port preservation?
- Rewriting the TTL
 - Comment: May break traceroute!
 - Answer: How about rewriting the TTL when it is larger than, e.g., 50?
- We plan to publish a revision of this document any time soon
Moving forward

Should this document be adopted as a BEHAVE WG item?