IPv6 Network Reconnaissance: Theory & Practice

Fernando Gont

LACSEC 2013 Medellín, Colombia. Mayo 5-10, 2013

Overview

- IPv6 changes the "Network Reconnaissance" game
- Brute force address scanning attacks undesirable (if at all possible)
- Security guys need to evolve in how they do net reconnaissance
 - Pentests/audits
 - Deliberate attacks
- Network reconnaissance support in security tools has been very poor

Overview

- IPv6 changes the "Network Reconnaissance" game
- Brute force address scanning attacks undesirable (if at all possible)
- Security guys need to evolve in how they do net reconnaissance
 - Pentests/audits
 - Deliberate attacks
- Network reconnaissance support in security tools has been very poor

What we did

- We researched the problem
- We built (the first?) comprehensive IPv6 Network Reconnaissance toolkit
- We used our toolkit on the public Internet, to:
 - Test the effectiveness of our techniques (theory -> practice)
 - Gain further insights (practice -> theory)

IPv6 Network Reconnaissance

- Address scans
- DNS-based (AXFR, reverse mappings, etc.)
- Application-based
- Inspection of local data structures (NC, routing table, etc.)
- Inspection of system configuration and log files
- "Snooping" routing protocols
- draft-ietf-opsec-ipv6-host-scanning is your friend :-)

IPv6 Address Scanning

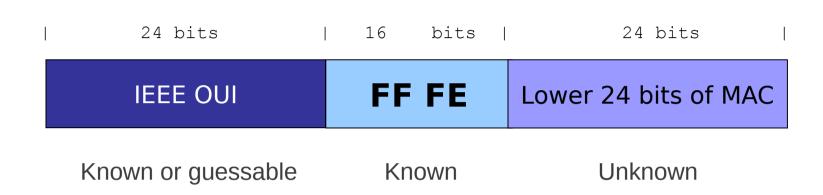
IPv6 Address Scanning Local Networks

Overview

- Leverage IPv6 all-nodes link-local multicast address
- Employ multiple probe types:
 - Normal multicasted ICMPv6 echo requests (don't work for Windows)
 - Unrecognized options of type 10xxxxxx
- Combine learned IIDs with known prefixes to learn all addresses
- Example:

```
# scan6 -i eth0 -L
```

IPv6 Address Scanning Remote Networks


Overview

- IPv6 address-scanning attacks have long been considered unfeasible
- This myth has been based on the assumption that:
 - IPv6 subnets are /64s, and,
 - Host addresses are "randomly" selected from that /64
- It is well-known that that is not the case. [Malone, 2008]

Malone, D., "Observations of IPv6 Addresses", Passive and Active Measurement Conference (PAM 2008, LNCS 4979), April 2008, http://www.maths.tcd.ie/~dwmalone/p/addr-pam08.pdf.

IPv6 addresses embedding IEEE IDs

- In practice, the search space is at most $\sim 2^{23}$ bits **feasible!**
- Example:

```
# scan6 -i eth0 -d fc00::/64 -K 'Dell Inc' -v
```

IPv6 addresses embedding IEEE IDs (II)

- Virtualization technologies present an interesting case
- Virtual Box employs OUI 08:00:27 (search space: ~2²³)
- VMWare ESX employs:
 - Automatic MACs: OUI 00:05:59, and next 16 bits copied from the low order 16 bits of the host's IPv4 address (search space: ~28)
 - Manually-configured MACs:OUI 00:50:56 and the rest in the range 0x000000-0x3fffff (search space: $\sim2^{22}$)
- Examples:

```
# scan6 -i eth0 -d fc00::/64 -V vbox
# scan6 -i eth0 -d fc00::/64 -V vmware -Q 10.10.0.0/8
```


IPv6 addresses embedding IPv4 addr.

- They simply embed an IPv4 address in the IID
- Two variants found in the wild:
 - 2000:db8::192.168.0.1
 Embedded in 32 bits
 - 2000:db8::192:168:0:1 <- Embedded in 64 bits
- Search space: same as the IPv4 search space feasible!
- Examples:

```
# scan6 -i eth0 -d fc00::/64 -B all -Q 10.10.0.0/8
# scan6 -i eth0 -d fc00::/64 -B 64 -Q 10.10.0.0/8
```


IPv6 addresses embedding service ports

- They simply embed the service port the IID
- Two variants found in the wild:
 - 2001:db8::1:80 <- n:port
 - 2001:db8::80:1 <- port:n
- Additionally, the service port can be encoded in hex vs. dec
 - 2001:db8::80 vs. 2001:db8::50
- Search space: smaller than 2⁸ feasible!
- Example:

```
# scan6 -i eth0 -d fc00::/64 -g
```


IPv6 "low-byte" addresses

- The IID is set to all-zeros, "except for the last byte"
 - e.g.: 2000:db8::1
- Other variants have been found in the wild:
 - 2001:db8::n1:n2 <- where n1 is typically greater than n2
- Search space: usually 28 or 216 feasible!
- Example:

```
# scan6 -i eth0 -d fc00::/64 --tgt-low-byte
```

IPv6 host-tracking

- SLAAC typically leads to IIDs that are constant across networks
- Sample scenario:
 - Node is known to have the IID 1:2:3:4
 - To check whether the node is at fc00:1::/64 or fc00:2::/64:
 - ping fc00:1::1:2:3:4 and fc00:2::1:2:3:4
- Examples:

```
# scan6 -i eth0 -d fc00:1::/64 -d fc00:2::/64
-W ::1:2:3:4
# scan6 -i eth0 -m prefs.txt -w iids.txt -l -z 60 -t -v
```

IPv6 Address Scanning Advanced topics

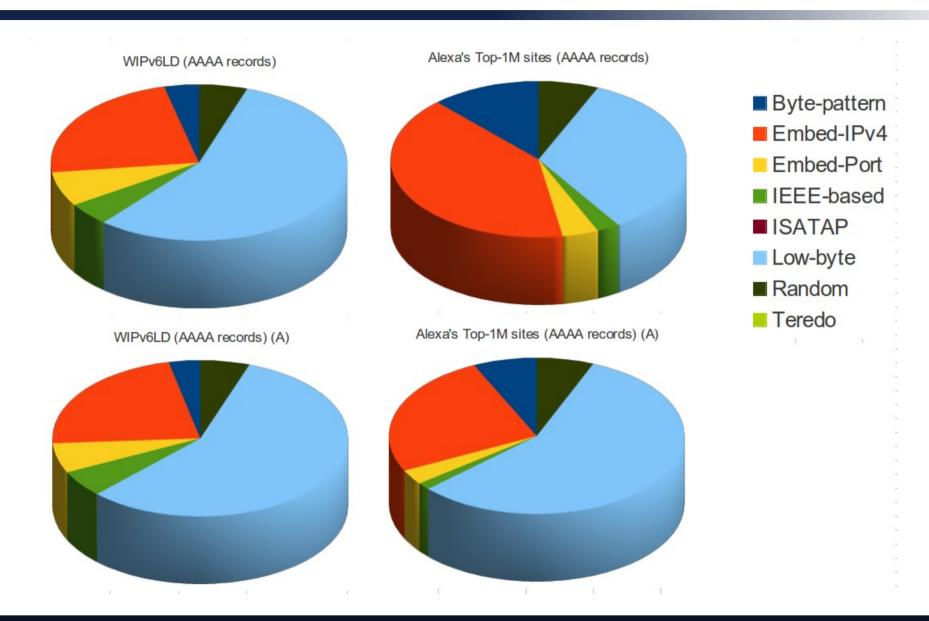
Packet-loss detection/recovery (TODO)

- Possible causes of packet-loss:
 - Network congestion
 - Rate-limits
 - Neighbor Cache exhaustion
- Address-scanning is essentially an open-loop!
- Workaround:
 - Obtain the last hop to a target-network
 - Probe that router periodically
 - Back-off and rewind upon packet loss

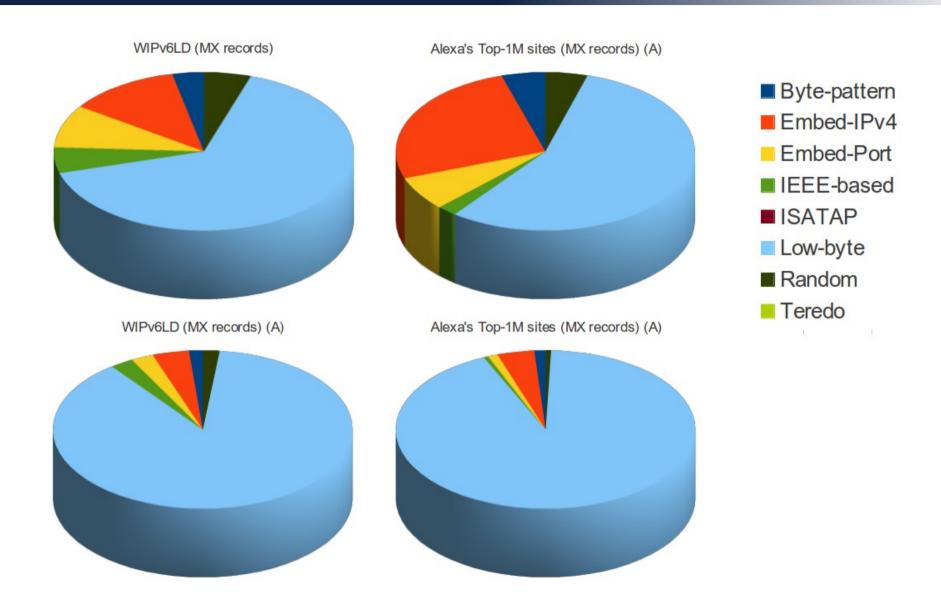
Automated heuristic scanner (TODO)

- Allow scan6 to receive IPv6 addresses known to be "alive"
- Identify the IPv6 address/IID type
- Compute new target ranges
 - "New" targets are ignored if redundant
 - Targets are coalesced with other targets if appropriate
- Different patterns -> different priorities based on sizeof(search space)
- Example:

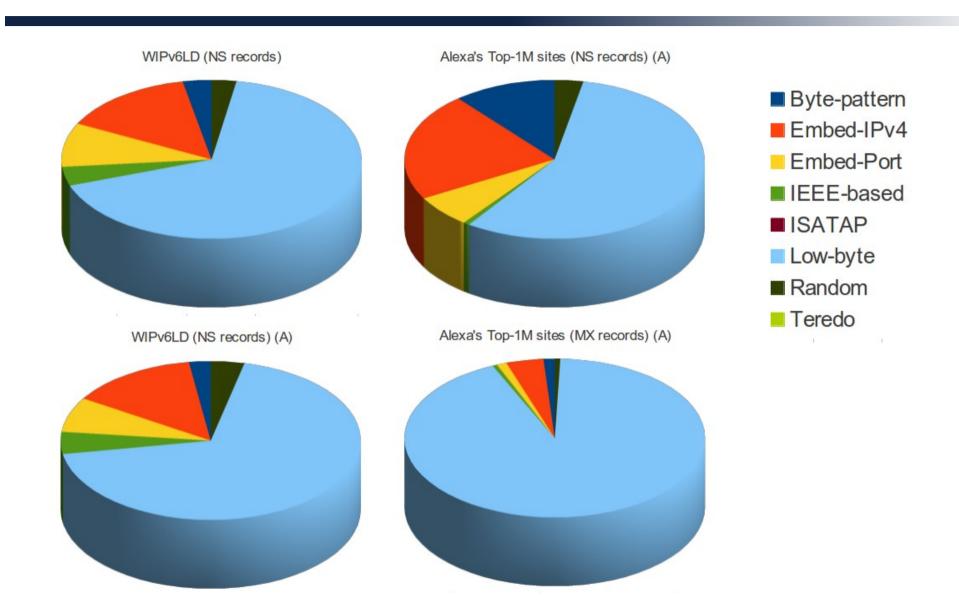
```
# cat sources | scan6 -i eth0 -c -v
```



IPv6 Address Scanning Real-world data


Our experiment

- Find "a considerable number of IPv6 nodes" for address analysis:
 - Alexa Top-1M sites + perl script + dig
 - World IPv6 Launch Day site + perl script + dig
- For each domain:
 - AAAA records
 - NS records -> AAAA records
 - MX records -> AAAA records
- What did we find?

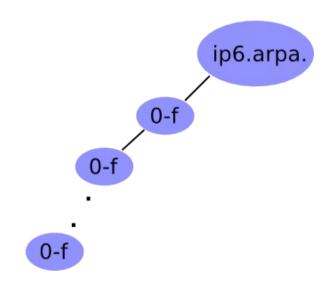

IPv6 address distribution for the web

IPv6 address distribution for MXs

IPv6 address distribution for the DNS

Further measurements (TODO)

- Evaluate the reliability of different probe packets
 - Is IPv6 fragment filtering that bad?
 - How about other IPv6 extension headers?
 - How about rate limiting of ICMPv6 vs. other probe packets
- Finally, evaluate IPv6 packet-filtering practices
 - Same as for IPv4?



DNS-based for IPv6 Network Reconnaissance

DNS for Network Reconnaissance

- Most of this ground is well-known from the IPv4-world:
 - DNS zone transfers
 - DNS bruteforcing
 - etc.
- DNS reverse-mappings particularly useful for "address scanning"

IPv6 DNS reverse mappings

- Technique:
 - Given a zone X.ip6.arpa., try the labels [0-f].X.ip6.arpa.
 - If an NXDOMAIN is received, that part of the "tree" should be ignored
 - Otherwise, if NOERROR is received, "walk" that part of the tree
- Example (using dnsrevenum6 from THC-IPv6):
 - \$ dnsrevenum6 DNSSERVER IPV6PREFIX

Inspection of local data structures

Inspection of local data structures

- Local data structures store valuable network information:
 - IPv6 addresses of local nodes
 - IPv6 addresses of "known" nodes
 - Routing infomation
 - etc
- loopback6 (upcoming) aims at collecting such information from the local nod
- Example:

```
# loopback6 --all
```

Inspection of system configuration & log files

System configuration and log files

- Yet another source of possibly interesting names/addresses
- Trivial approach:
 - Walk the tree and look virtually everywhere
- Improved approach:
 - Look at interesting places depending on the local operating system
- audit6 (upcoming) aims at collecting such information from the local system
- Example:

```
# audit6 --all
```

Conclusions

Thanks!

Fernando Gont

fgont@si6networks.com

@FernandoGont

SI6 Networks

www.si6networks.com

@SI6Networks

