
Results of a Security Assessment
of Common Implementation
Strategies of the TCP and IP
Protocols

Fernando Gont
project carried out on behalf of

UK CPNI

Kernel Conference Australia 2009
Brisbane, Australia, 15-17 July 2009

Agenda

Overview
Discussion of some security aspects of IPv4

IP Identification field

Discussion of some security aspects of TCP
Overview of some basic TCP mechanisms
Port numbers
TCP Window
TCP urgent mechanism
TCP options
Connection-flooding attacks
Security Implications of the TCP reassembly buffer
Remote OS detection via TCP/IP stack fingerprinting

Conclusions

Overview
(or “why we did what we did”)

Problem Statement (I)

During the last twenty years, many vulnerabilities were found in a
number of implementations of the TCP & IP protocols, and in the
protocols themselves.
Documentation of these issues and of possible mitigations has been
spread among a number of vulnerability reports issued by vendors and
CSIRTs and a variety of online documents.
Some of this documentation proposes counter-measures for these issues
without analyzing their interoperability implications on the protocols.
(See e.g., Silbersack’s presentation at BSDCan 2006).
The efforts of the security community never resulted in changes in the
corresponding IETF specifications, and sometimes not even in the
protocol implementations.

Problem Statement (II)

It was very difficult to produce a secure/resilient implementation of the
TCP/IP protocols from the IETF specifications.
It was painful to spot the correct advice among all the available
documentation.
As a result,

New implementations of the protocols re-implemented bugs/vulnerabilities
found in older implementations.
New protocols re-implemented mechanisms or policies whose security
implications had been known from other protocols (e.g., Router Header Type
0 in IPv6 vs. IPv4 source routing).

Project overview

During the last few years, CPNI – formerly NISCC – embarked itself in a
project to fill this gap.
The goal was to produce a set of documents that would serve as a
security roadmap for the TCP and IP protocols, with the goal of raising
awareness about the security implications of the protocols and providing
advice to mitigate them.
This set of documents would be updated in response to the feedback
received from the comunity.
Finally, we planned to take the results of this project to the IETF, so that
the relevant specifications could be modified where needed.

Ouput of this project

“Security Assesment of the Internet Protocol”
63-page document, published by the UK CPNI in July 2008.
Available at: http://www.cpni.gov.uk/Docs/InternetProtocol.pdf
Currently adopted by the IETF as a work item of the opsec wg (draft-ietf-
opsec-ip-security)

“Security Assessment of the Transmission Control Protocol (TCP)”
130-page document, published by the UK CPNI in February 2009.
Available at: http://www.cpni.gov.uk/Docs/tn-03-09-security-assessment-
TCP.pdf
Submitted to the IETF (draft-gont-tcp-security), with the IETF currently
deciding whether to adopt this document as a wg item of the TCPM working
group.

Internet Protocol version 4

IPv4 Identification field

IP IDentification field

The IP Identification (IP ID) field is used by the IP framentation
mechanism.
The tuple {Source Address, Destination Address, Protocol, Identification}
identifies fragments that correspond to the same original datagram, and
thus the tuple cannot be simultaneously used for more than one packet
at any given time.
If a tuple {Source Address, Destination Address, Protocol, Identification}
that was already in use for an IP datagram were reused for some other
datagram, the fragments of these packets could be incorrectly
reassembled at the destination system.
These “IP ID collisions” have traditionally been avoided by using a
counter for the Identification field, that was incremented by one for each
datagram sent.
Thus, a specific IP ID value would only be reused when all the other
values have already been used.

Security implications of the Identification
field

If a global counter is used for generating the IP ID values, the IP
Identification field could be exploited by an attacker to:

Count the number of systems behind a NAT
Infer the packet transmission rate of a remote system
Perform a stealth port scanning

Randomizing the Identification field

In order to mitigate the security implications of the Identification field,
the IP ID should not be predictable (e.g., it should not be set as a result of
a global counter).
However, it has always been assumed that trivial randomization would
be inappropriate, as it would lead to IP ID collisions and hence to
interoperability problems.
Some systems have employed specific PRNG schemes to avoid quick
reuse of the IP ID values. However, some of them have been found to
produce predictable sequences.
An analysis of the use of fragmentation for connection-oriented (CO) and
for connection-less (CL) protocols can shed some light about how to set
the IP Identification field.

Randomizing the IP ID: CO protocols

Most connection-oriented protocols implement mechanisms for avoiding
fragmentation (e.g., Path-MTU Discovery)

The performance implications of IP fragmentation have been known for
about 20 years.
Also, given the current bandwidth availability, and considering that the IP ID
is 16-bit long, it is unacceptable to rely on IP fragmentation, as IP ID values
would be reused too quikly regardless of the specific IP ID generation
scheme.

We therefore recommend that connection-oriented protocols not rely on
IP fragmentation, and that they randomize the value they use for the IP
Identification field of outgoing packets.

Randomizing the IP ID: CL protocols

Connection-less transport protocols typically lack of:
packet sequencing mechanisms
flow control mechanisms
reliability mechanisms

The scenarios and applications for which they are used assume that:
Applications will be used in environments in which packet-reordering is
unlikely
The data transfer rates will be low enough and/or the total amount of data to
be transferred will be small enough that flow control is unnecessary
Packet loss is not important and probably also unlikely.

We therefore recommend connection-less protocols to simply randomize
the IP ID.
Applications concerned with this policy should consider using a
connection-oriented transport protocol.

Transmission Control Protocol

Overview of basic TCP
mechanisms

(connection establishment & termination)

Connection-establishment

The connection establishment phase usually involves the exchange of
three segments (hence it’s called “three-way handshake).

Once the three-way handshake has completed, the sequence numbers
(and other parameters) will be properly synchronized, and the data
transfer can proceed.

Connection termination

The connection termination phase usually involves the exchange of four
segments

The TCP that begins the connection-termination phase (Host A) usually
stays in the TIME-WAIT state for 4 minutes, while the other end-point
moves to the fictional CLOSED state (i.e., it does not keep any state for
this connection)

Collision of connection-id’s
Due to the TIME-WAIT state, it is possible that when a connection-request is sent
to a remote peer, there still exists a previous incarnation of that connection in the
TIME-WAIT state. In that scenario, the connection-request will fail.

It is clear that the collission of connection-id’s is undesirable, and thus
should be avoided.

RFC 793 RFC 1337

TCP port numbers
(port obfuscation)

Ephemeral port selection algorithms

When selecting an ephemeral port, the resulting connection-id {client
address, client port, server address, server port} must not be currently in
use.
If there is currently a local TCB with that connection-id, another
ephemeral port should be selected, such that the collision of connection-
id’s is solved.
However, it is very difficult for the local system to actually detect that
there is an existing communication instance in a remote system using
that connection-id (such as a TCP connection in the TIME-WAIT state).
In the event the selection of an ephemeral port resulted in connection-id
that was currently in use at the remote system, a “collision of connection-
id’s” would occur.
Most systems have traditionally avoided these collisions by selecting
ephemeral ports from a global counter (i.e., a similar approach to that
used for the IP Identification field), thus leading to predictable ephemeral
ports.

TCP Ephemeral Port Obfuscation

Predictable ports numbers have negative security implications, as they
make it easy for an attacker to guess/predict the connection-id of a target
connection.
However, simple randomization has been found to lead to
interoperability problems (connection failures). (See Silbersack’s
presentation at BSDCan 2006).
A good port obfuscation scheme should:

Minimize the predictability of the ephemeral port numbers by an off-path
attacker.
Avoid quick re-use of the connection-id’s
Avoid the use of port numbers that are needed for specific applications (e.g.,
port 80).

A good TCP port obfuscation algorithm

The IETF Internet-Draft “Port Randomization” [Larsen, M. and Gont, F.,
2008] describes an ephemeral port selection algorithm that’s based on
an expression introduced by Steven Bellovin for the selection of ISN’s:

Port = counter + F(local_IP, remote_IP, remote_port, secret_key)

It separates the port number space used for connecting to different
end-points
It has been found (empyrically) to have better interoperability
properties than other obfuscation schemes
It ships with the Linux kernel already.
We recommend the implementation of this algorithm (or its improved
double-hash variant) for the selection of ephemeral ports.

Sample output of the algorithm

Sample output of the recommended algorithm.

202846553510241000128.0.0.1:80#5

553136553510244504170.210.0.1:80#4

553026553510244504170.210.0.1:80#3

202516553510241000128.0.0.1:80#2

202406553510241000128.0.0.1:80#1

portcountermax_ephemeralmin_ephlemeralF()IP:portNr.

TCP Window

TCP Window

The TCP Window imposes an upper limit on the maximum data transfer
rate a TCP connection can achieve

Maximum Transfer Rate = Window / Round-Trip Time
Therefore, under ideal network conditions (e.g., no packet loss), the TCP
Window should be, at least:

TCP Window >= 2 * Bandwidth * Delay
A number of systems and applications use arbitrarily large TCP Windows,
in the hope of avoiding the TCP Window from limiting the data transfer
rate.
However, larger windows increase the sequence number space that will
be considered valid for incoming connections, therefore increasing the
chances of an off-path attacker of successfully performing a blind-attack
against a TCP connection.
Advice: If an application doesn’t require high-throughput (e.g., H.245),
use a small window (e.g., 4 KBytes).

TCP Urgent mechanism
(URG flag and Urgent Pointer)

Urgent mechanism

The urgent mechanism provide a means for an application to indicate an
“interesting point” in the data stream (usually a point in the stream the
receiver should jump to). It is not meant to provide a mechanism for
out-of-band (OOB) data.
However, most stacks implement the urgent mechanism as out of band
data, putting the urgent data in a different queue than normal data.

Urgent data as OOB data

TCP/IP stacks differ in how they implement Urgent Data as OOB.
Virtually all stacks only accept a single byte of OOB data
Other stacks (Microsoft’s) accept OOB data of any length (*).

(*) It has been reported that they do not enforce limits on the amount of OOB queued!

Virtually all stacks Microsoft’s stack

Ambiguities in the semantics of the UP

There’s a mismatch between the IETF specifications and virtually all real
implementations.

“the urgent pointer points to the last byte of urgent data” (IETF) vs. “the
Urgent Pointer points to the byte following the last byte of urgent data”
(virtually all implementations)

Most implementations nevertheless include a (broken) system-wide
toggle to switch between these two possible semantics of the Urgent
Pointer

IETF specs Virtually all implementations

Urgent data in the current Internet

Some middle-boxes (e.g., Cisco Pix), by default, clear the URG flag and
set the Urgent Pointer to zero, thus causing the “urgent data” to become
“normal data”.
It is clear that urgent indications are not reliable in the current Internet.

Advice on the urgent mechanism

All the aforementioned issues lead to ambiguities in how urgent data
may be interpreted by the receiving TCP, thus requiring much more work
on e.g., NIDS.
As discussed before, the urgent mechanism is unreliable in the current
Internet (i.e., some widely deployed middle-boxes break it by default).
Advice: Applications should not rely on the urgent mechanism.
If used,

It should be used just as a performance improvement
Applications should set the SO_OOBINLINE socket option, so that “urgent
data” are procesed inline.

The TCPM wg is currently working on a Standards-track document (draft-
ietf-tcpm-urgent-data) that discourages the use of the TCP urgent
mechanism, updates RFC 1122 to match implementations, and
encourages the use od the SO_OOBINLINE socket options when the
urgent mechanism is employed.

TCP Options
(TCP Timestamps)

Timestamps option

TCP timestamps are used to perform Round-Trip Time (RTT)
measurement and Protection Against Wrapped Sequence Numbers
(PAWS)
For the purpose of PAWS, timestamps are required to be monotonically
increasing. However, there’s no requirement that the timestamps be
monotonically increasing accross TCP connections.
Generation of timestamps such that they are monotonically increasing
accross conections allows an improved handling of connection-requests
(SYN segments) when there’s a TCB in the TIME-WAIT state (i.e., accept
the incomning SYN if it contains a timestamps that is larger than the last
timestamp seen in the previous incarnation of the same connection).
Many stacks select the TCP timestamps from a global timer, which is
initialized to zero upon system bootstrap. However, this policy leads to
predictable TCP timestamps.

Security implications of TCP timestamps

Predictable TCP timestamps have a number of security implications:
In order to perform a blind attack against a TCP connection that employs TCP
timestamps, an attacker must be able to guess or know the timestamp values
in use.
Furthermore, if the timestamps clock is initilized to a fixed value at system
bootstrap, the timestamps will leak the system uptime.

Therefore, predictable TCP timestamps should be avoided.
Some systems (e.g. OpenBSD) randomize the TCP timestamps. However,
this prevents the quick reuse of connection-id’s.

Advice on TCP timestamps

Advice: Generate timestamps with a RFC1948-like scheme:

timestamp = T() + F(localhost, localport, remotehost, remoteport,
secret_key)

This expression provides a per-destination-endpoint monotonically-
increasing sequence, thus enabling the improved handling of SYN
segments while avoiding an off-path attacker from guessing the
timestamp values used for new connections.
This timestamps generation scheme ships with Linux.
It will most likely be adopted by the IETF in the revision of the TCP
timestamps RFC (RFC 1323).

Connection-flooding attacks
(Naphta and FIN-WAIT-2)

Some variants of connection-flooding attacks

Naphta: aims at performing a DoS by establishing lots of TCP connections
that are then “abandoned”.
FIN-WAIT-2 flood: aims at performing a DoS by establishing lots of TCP
connections and abandoning them in the FIN-WAIT-2 state.

Naphta

The creation and maintenance of a TCP connection requires system
memory to maintain shared state between the local and the remote
TCPs.
Given that system memory is a limited resource, this can be exploited to
perform a DoS attack (this attack vector has been referred to as
“Naphta”).
In order to avoid wasting his own resources, an attacker can bypass the
kernel implementation of TCP, and simply craft the required packets to
establish a TCP connection with the remote endpoint, without tying his
own resources.
Counter-measures

Enforcing per-user and per-process limits
Limiting the number of simultaneous connections at the application
Limiting the number of simultaneous connections at firewalls.

A typical connection-termination scenario:

Problems that may potentially arise due to the FIN-WAIT-2 state
There’s no limit on the amount of time a connection can stay in the FIN-
WAIT-2 state
At the point a TCP gets into the FIN-WAIT-2 state there’s no user-space
controlling process

FIN-WAIT-2 flooding attack

Countermeasures for FIN-WAIT-2
flooding

Enforce a limit on the duration of the FIN-WAIT-2 state. E.g., Linux 2.4
enforces a limit of 60 seconds. Once that limit is reached, the connection
is aborted.
The counter-measures for the Naptha attack still apply. However, the fact
that this attack aims at leaving lots of connections in the FIN-WAIT-2 state
will usually prevent an application from enforcing limits on the number
of ongoing connections.
Applications should be modified so that they retain control of the
connection for most states. This can be achieved with a conbination of
the shutdown(), setsockopt(), and close().
TCP should also enforce limits on the number of ongoing connections
with no controlling process.

TCP reassembly buffer

TCP reassembly (receive) buffer

When out-of-order data are received, a “hole” momentarily exists in the
data stream which must be filled before the received data can be
delivered to the application making use of TCP’s services.

This mechanism can be exploited in at least two ways:
An attacker could establish a large number of TCP connections and
intentionally send a large amount of data on each of those connections to
the receiving TCP, leaving a hole in the data stream so that those data cannot
be delivered to the application.
Same as above, but the attacker would send e.g., chunks of one byte of data,
separated by holes of e.g., one byte, targeting the overhead needed to hold
and link each of these chunks of data.

Improvements for handling out-of-order data

TCP implementations should enforce limits on the amount of out-of-
order data that are queued at any time.
TCP implementations should enforce limits on the maximum number of
“holes” that are allowed for each connection.
If necessary, out-of-order data could be discarded, with no effect on
interoperability. This has a performance penalty, though.

Remote OS detection
(via TCP/IP stack fingerprinting)

Remote OS detection

A number of tools, such as nmap, can detect the operating system in use
at a remote system, via TCP/IP stack fingerprinting
This is achived by analyzing the response of the TCP/IP stack to a number
of probes that different stack process in different ways
The precision of their results is amazingly good. – It shouldn’t be that
good!
Question: Wouldn’t it be possible for these TCP/IP stacks to respond to
most of these probes in exactly the same way?

Some fingerprinting probes

Nmap and similar tools send a number of probe packets to the target
system to fingerprint its TCP/IP stack (e.g., FIN probe, Bogus flag probe,
etc.).
Different systems respond to these probe packets in different ways.
We have performed an analysis of each of these fingerprinting
techniques, and provided advice on how to respond to each of these
probe packets.
We expect that in the long term remote OS detection based on these
probes will have much less precision.

TCP option ordering

Another important technique for remote OS detection is to fingerprint
the TCP options used by the target system.
Different TCP implementations enable different options (by default) in
their TCP connections. Additionally, they frame the options differently.
There may be reasons for a TCP to include or not include some specific
options. On the other hand, how to frame the options is, for the most
part, simply a matter of choice.
More work is needed to get consensus on which options should be
included by default, and how to frame them.
An additional benefit resulting from arriving to such consensus is that
stacks could implement “TCP option prediction” (i.e., tune the code so
that processing of packets with the usual options in the usual order is
faster).

Conclusions

Conclusions and Further Work

Working on TCP/IPv4 security in 2005-2008 probably didn’t have much
glamour. However, this was something that needed to be done.
Unfortunately, many people will not read past the preface of the
documents, but will nevertheless claim that “there’s nothing new in these
documents” and/or “there’s nothing to be done about this”.
Still in 2009, there’s lots of work to do to improve the available TCP
implementations.
We’re aware of some efforts in the vendor community to improve the
security/resiliency of TCP. Not sure what the end result will be.
There is some resistance in the IETF to update/fix the specs (talk about
politics). – Get involved!
Your feedback really matters.

Questions?

Acknowledgements

UK CPNI, for their continued support
KCA 2009 organizers, for their support in this conference.

Fernando Gont
fernando@gont.com.ar

http://www.gont.com.ar

