Security Implications of IPv6 Addressing

Fernando Gont

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

About this presentation

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

About the speaker...

- I have worked in security assessment of communication protocols for:
 - UK NISCC (National Infrastructure Security Co-ordination Centre)
 - UK CPNI (Centre for the Protection of National Infrastructure)
- More information at: http://www.gont.com.ar

My approach for this presentation

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

© 2014 SI6 Networks. All rights reserved

My approach for this presentation (II)

- Goal was to do a theory + practice approach
- Apparently I cannot do my presentation from my computer
 - No UNIX -> no tools -> no show
- But: https://github.com/fgont/ipv6toolkit

Motivation for this presentation

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

Motivation

- TCP & IPv4 were introduced in the early '80's
- Yet in the late '90s (and later!) we were still addressing security issues
 - SYN flood attacks
 - Predictable TCP Initial Sequence Numbers (ISNs)
 - Predictable transport protocol ephemeral port numbers
 - IPv4 source routing
 - etc.
- Mitigations typically researched after exploitation
- Patches applied on production systems

Motivation (II)

• We hope to produce an alternative future for IPv6

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

© 2014 SI6 Networks. All rights reserved

IPv6's main security problem

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

© 2014 SI6 Networks. All rights reserved

IPv6 Addressing Brief overview

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

IPv6 Global Unicast Addresses

n	bits		m bits		128-n-m bits	I
Global R	outing Prefix	Sı	ıbnet ID		Interface ID	

- A number of possibilities for generating the Interface ID:
 - Embed the MAC address (traditional SLAAC)
 - Embed the IPv4 address (e.g. 2001:db8::192.168.1.1)
 - Low-byte (e.g. 2001:db8::1, 2001:db8::2, etc.)
 - Wordy (e.g. 2001:db8::dead:beef)
 - According to a transition/co-existence technology (6to4, etc.)
 - Random and constant (MS Windows)
 - Random and temporary (RFC 4941)

IPv6 Addressing Overview of Security Implications

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

© 2014 SI6 Networks. All rights reserved

Security Implications of IPv6 Addressing

- Correlation of network activity over time
- Correlation of network activity across networks
- Network reconnaissance
- Device specific attacks

IPv6 Addressing Device-specific attacks

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

Network Activity Correlation

- IIDs based on the MAC address leak out the vendor of the NIC •
- No need to do further reconnaissance before exploiting such \bullet attacks

IEAR 2014

IPv6 Addressing Network Activity Correlation

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

Network Activity Correlation

- IPv6 IIDs are typically globally-unique, and stable
- Example:
 - Day #1: I see some activity from node 2001:db8:1::1111:22ff:fe33:4444
 - Day #2: I see some activity from node 2001:db8:1::1111:22ff:fe33:4444
 - The IID "1111:22ff:fe33:4444" leaks out host "identity"
 - Hence I can correlate the both network events
- Was this there for IPv4?
 - Not to the same extent
 - Small address space (and NAT!) led to address "collisions"

IPv6 Addressing Host Tracking

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

Host-tracking attacks

- Traditional IIDs are constant for each interface
- As the host moves, the prefix changes, but the IID doesn't
 - the 64-bit IID results in a super-cookie!
- This introduces a problem not present in IPv4: host-tracking
- Example:
 - In net #1, host configures address: 2001:db8:1::1111:22ff:fe33:4444
 - In net #2, host configures address: 2001:db8:2::1111:22ff:fe33:4444
 - The IID "1111:22ff:fe33:4444" leaks out host "identity".

IPv6 Addressing Network Reconnaissance

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

© 2014 SI6 Networks. All rights reserved

Introduction

"Thanks to the increased IPv6 address space, IPv6 host scanning attacks are unfeasible. Scanning a /64 would take 500.000.000 years"

– Urban legend

Is the search space for a /64 really 2⁶⁴ addresses?

Short answer: No! (see: Jraft-ietfopsec-ipv6-host-scanning)

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

Our experiment

- Find "a considerable number of IPv6 nodes" for address analysis:
 - Alexa Top-1M sites + perl script + dig
 - World IPv6 Launch Day site + perl script + dig
- For each domain:
 - AAAA records
 - NS records -> AAAA records
 - MX records -> AAAA records
- What did we find?

IPv6 address distribution for the web

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

© 2014 SI6 Networks. All rights reserved

IPv6 address distribution for MXs

© 2014 SI6 Networks. All rights reserved

IPv6 address distribution for the DNS

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

Mat Ford's measurements

• Analysis of client IPv6 addresses from web-server log:

IPv6 addresses embedding IEEE IDs

- In practice, the search space is at most $\sim 2^{23}$ bits **feasible!**
- Example:
 - # scan6 -d fc00::/64 -K 'Dell Inc' -v

IPv6 addresses embedding IEEE IDs (II)

- Virtualization technologies present an interesting case
- Virtual Box employs OUI 08:00:27 (search space: ~2²³)
- VMWare ESX employs:
 - Automatic MACs: OUI 00:05:59, and next 16 bits copied from the low order 16 bits of the host's IPv4 address (search space: ~2⁸)
 - Manually-configured MACs:OUI 00:50:56 and the rest in the range 0x000000-0x3fffff (search space: ~2²²)
- Examples:
 - # scan6 -d fc00::/64 -V vbox
 - # scan6 -d fc00::/64 -V vmware -Q 10.10.0.0/8

IPv6 addresses embedding IPv4 addr.

- They simply embed an IPv4 address in the IID
- Two variants found in the wild:
 - 2000:db8::192.168.0.1 <- Embedded in 32 bits
 - 2000:db8::192:168:0:1 <- Embedde in 64 bits
- Search space: same as the IPv4 search space feasible!
- Example:
 - # scan6 -d fc00::/64 -Q 10.10.0.0/8

IPv6 addresses embedding service ports

- They simply embed the service port the IID
- Two variants found in the wild:
 - 2001:db8::1:80 <- n:port
 - 2001:db8::80:1 <- port:n
- Additionally, the service port can be encoded in hex vs. dec
 - 2001:db8::80 vs. 2001:db8::50
- Search space: smaller than 2⁸ feasible!
- Example:
 - # scan6 -d fc00::/64 -g

IPv6 "low-byte" addresses

- The IID is set to all-zeros, "except for the last byte"
 - e.g.: 2000:db8::1
- Other variants have been found in the wild:
 - 2001:db8::n1:n2 <- where n1 is typically greater than n2
- Search space: usually 2⁸ or 2¹⁶ feasible!
- Example:
 - # scan6 -d fc00::/64 --tgt-low-byte

IPv6 host-tracking

- SLAAC typically leads to IIDs that are constant across networks
- Sample scenario:
 - Node is known to have the IID **1:2:3:4**
 - To check whether the node is at fc00:1::/64 or fc00:2::/64:
 - ping fc00:1::**1:2:3:4** and fc00:2::**1:2:3:4**
- Examples:
 - # scan6 -d fc00:1::/64 -d fc00:2::/64 -W ::1:2:3:4
 - # scan6 -m prefs.txt -w iids.txt -l -z 60 -t -v

IPv6 Addressing Existing Mitigations

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

Mitigation for network activity correlation

- RFC 4941: privacy/temporary addresses
 - Random IIDs that change over time
 - Generated **in addition** to traditional SLAAC addresses
 - Traditional addresses used for server-like communications, temporary addresses for client-like communications
- Operational problems:
 - Difficult to manage!
- Security problems:
 - They mitigate host-tracking **only partially** (more on this later)
 - They **do not** mitigate host-scanning attacks

Industry mitigations for scanning attacks

- Microsoft replaced the MAC-address-based identifiers with (non-standard) randomized IIDs
 - Essentially RFC 4941, but they don't vary over time
- Certainly better than MAC-address-based IIDs, but still not "good enough"
- They mitigate host-scanning, but not host tracking (more on this later)

IPv6 Addressing Standardization Efforts

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

© 2014 SI6 Networks. All rights reserved

Auto-configuration address/ID types

	Stable	Temporary
Predictable	IEEE ID-derived	None
Unpredictable	NONE	RFC 4941

- We lack stable privacy-enhanced IPv6 addresses (*)
 - Used to replace IEEE ID-derived addresses
 - Pretty much orthogonal to privacy addresses
 - Probably "good enough" in most cases even without RFC 4941

(*) Now called "Semantically Opaque Interface Identifiers"

Stable privacy-enhanced addresses

• Generate Interface IDs as:

F(Prefix, Net_Iface, Network_ID, Secret_Key)

- Where:
 - F() is a PRF (e.g., a hash function)
 - Prefix SLAAC or link-local prefix
 - Net_Iface is some interface identifier
 - Network_ID could be e.g. the SSID of a wireless network
 - Secret_Key is unknown to the attacker (and randomly generated by default)

Stable privacy-enhanced addresses (II)

- As a host moves:
 - Prefix and Network_ID change from one network to another
 - But they remain constant within each network
 - F() varies across networks, but remains constant within each network
- This results in addresses that:
 - Are stable within the same subnet
 - Have different Interface-IDs when moving across networks
 - For the most part, they have "the best of both worlds"
- A Linux implementation is in the works

IETF work in this area

- draft-ietf-6man-ipv6-address-generation-privacy
 - Discusses the security implications of IPv6 addressing
- RFC7217:
 - Specifies how to generate semantically-opaque addresses
- draft-ietf-6man-default-iids
 - Notes that implementations should default to RFC7217
- draft-ietf-opsec-ipv6-host-scanning
 - Discusses network reconnaissance

Some conclusions

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

Conclusions

- IPv6 changes the "Network Reconnaissance" game
- A number of techniques still need to be explored
- Stay tuned to further developments in this area :-)

Questions?

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

Thanks!

Fernando Gont

fgont@si6networks.com

IPv6 Hackers mailing-list

http://www.si6networks.com/community/

www.si6networks.com

IEAR 2014 Buenos Aires, Argentina. September 5, 2014

