Results of a Security Assesment of the Internet Protocol version 6 (IPv6)

Fernando Gont

About...

- Security Researcher at SI6 Networks (www.si6networks.com)
- Have worked on a number of projects for:
 - UK NISCC (National Infrastructure Security Co-ordination Centre)
 - UK CPNI (Centre for the Protection of National Infrastructure)
- Member at CEDI (I+D), UTN/FRH, Argentina
- Active participant at the Internet Engineering Task Force (IETF)
- More information at: http://www.gont.com.ar

Agenda

- Motivation for this presentation
- Brief comparison between IPv6/IPv4
- Security Implications of IPv6
- Security implications of transition/co-existence mechanisms
- Security implications of IPv6 on IPv4 networks
- Key areas in which further work is needed
- Conclusions
- Questions and answers

Motivation for this presentation

So... what is this IPv6 thing about?

- Designed to address the problem of IPv4 address exhaustion
- Has not yet been widely/globally deployed (<1% global traffic)
- Supported by most general-purpose OSes
- ISPs and other organizations have started to take it more seriously:
 - Exhaustion of the free addresses pool at IANA
 - Awareness activities (World IPv6 Day, World IPv6 Launch Day)
 - Imminent exhaustion of free addresses pool at different RIRs
- Looks like IPv6 is finally taking off...

Motivation for this presentation

- Lots of myths about IPv6 security:
 - Security considered during IPv6 design/standardization
 - Security paradigm will change from network-centric to host-centric
 - Increased use of IPsec
 - etc.
- These myths have had a negative impact on IPv6 deployments
- This presentation will try to:
 - Separate fud from fact
 - Influence how you think about "IPv6 security"

General considerations about IPv6 security

Some interesting aspects...

- Less experience with IPv6 than with IPv4
- IPv6 implementations less mature than their IPv4 counterparts
- Less support in security devices for IPv6 than for IPv4
- The complexity of the resulting Internet will increase:
 - Two Internet protocols
 - Increased used of NATs
 - Increased use of tunnels
 - Use of other transition/co-existence technologies
- Fewer well-trained human resources

... even then IPv6 will be the only option to remain in this business

Brief comparison between IPv6/IPv4

Brief comparison between IPv6/IPv4

• Similar in terms of *functionality*, but not in terms of *mechanisms*

	IPv4	IPv6	
Addressing	32 bits	128 bits	
Address Resolution	ARP	ICMPv6 NS/NA (+ MLD)	
Auto- configuration	DHCP & ICMP RS/RA	ICMPv6 RS/RA & DHCPv6 (optional) (+ MLD)	
Fault Isolation	ICMPv4	ICMPv6	
IPsec Support	Optional	Optional	
Fragmentation	Both in hosts and routers	Only in hosts	

Security Implications of IPv6

IPv6 Addressing Implications on host scanning

Hack In Paris 2012 Paris, France. June 18-22, 2012

© 2012 SI6 Networks. All rights reserved

Brief overview of IPv6 addressing

- Main driver for IPv6 deployment
- Employs 128-bit addresses
- Address semantics similar to those of IPv4:
 - Addresses are aggregated intro "prefixes"
 - Several address types
 - Several address scopes
- Each interface typically employs more than one address, of different type/scope:
 - One link-local unicast address
 - One or more global unicast addresses
 - etc.

Global Unicast Addresses

n bits	m bits	128-n-m bits
Global Routing Prefix	Subnet ID	Interface ID

- The "Interface ID" is typically 64-bit long
- Can be selected with different criteria:
 - Modified EUI-64 Identifiers
 - Privacy addresses
 - Manually configured
 - As specified by transition/co-existence technologies

Implications on host scanning

Myth: "IPv6 host scanning attacks are infeasible... they would take ages!"

- This claim assumes that addresses are "randomized"
- Malone (*) measured IPv6 addresses in the wild, and categorized them into:
 - SLAAC (MAC address embedded in the Interface ID)
 - IPv4-based (2001:db8::192.168.10.1, etc.)
 - "Low byte" (2001:db8::1, 2001:db8::2, etc.)
 - Privacy addresses (randomized Interface ID)
 - "Wordy" (2001:db8::dead:beef, etc.)
 - Resulting from transition technologies (Teredo, etc.)

(*) Malone, D. 2008. *Observations of IPv6 Addresses*. Passive and Active Measurement Conference (PAM 2008, LNCS 4979), 29–30 April 2008.

IPv6 addresses in the real world

• Results obtained by [Malone, 2008] (*):

Hosts

Address Type	Percentage	
SLAAC	50%	
IPv4-based	20%	
Teredo	10%	
Low-byte	8%	
Privacy	6%	
Wordy	<1%	
Other	<1%	

Routers

Address Type	Percentage		
Low-byte	70%		
IPv4-based	5%		
SLAAC	1%		
Wordy	<1%		
Privacy	<1%		
Teredo	<1%		
Other	<1%		

(*) Malone, D. 2008. *Observations of IPv6 Addresses*. Passive and Active Measurement Conference (PAM 2008, LNCS 4979), 29–30 April 2008.

Some conclusions

- IPv6 host scanning attacks are feasible
- They have already been seen in the wild
- They will leverage:
 - Patterns in IPv6 addresses
 - "Leaks" at the application layer
 - Multicast addresses, Neighbor discovery, etc. (for local scans)
- Recommendations:
 - Avoid any patterns in IPv6 addresses
 - We should update some standards (see draft-ietf-6man-stable-privacy-addresses)
 - Always consider the use of firewalls and NIDS

IPv6 addressing Implications on end to end connectivity

Hack In Paris 2012 Paris, France. June 18-22, 2012

© 2012 SI6 Networks. All rights reserved

Brief overview

- The IPv4 Internet originally followed the "End to End Principle"
 - Dumb network, smart hosts
 - Communication is allowed between any two nodes
 - The network does not inspect the payload of packets
- It is usually argued that this principle fosters innovation
- NATs (and firewalls) have removed this principle from the Internet
- Since IPv6 does not need IPv6, it is expected that IPv6 deployment will return the End to End Principle

IPv6 and the "End to End Principle"

Myth: "IPv6 will return the 'End to End Principle' to the Internet"

- It is assumed that the increased address space will return this principle
- However,
 - Global addressing != end to end connectivity
 - Most networks don't care about innovation
 - Users expect in IPv6 the same services they know from the IPv4 world
 - End to end connectivity would increase host exposure
- That is,
 - End to end connectivity is not necessarily desirable
 - Typical IPv6 subnets will only allow outgoing/returning traffic (by means of firewalls)

Address Resolution

Brief overview

- Address resolution: IPv6 \rightarrow link-layer
- Employs "Neighbor Discovery":
 - Based on ICMPv6 messages (Neighbor Solicitation y Neighbor Advertisement)
 - Analogous to ARP Request and ARP Reply
 - Implemented on top of IPv6, rather than on top of the link-layer

Vulnerabilities and countermeasures

- IPv4 ARP-based attacks can be ported to the IPv6 world:
 - Man in The Middle
 - Denial of Service
- Possible counter-measures:
 - Deploy SEND
 - Monitor Neighbor Discovery traffic
 - Employ static entries in the Neighbor Cache
 - Restrict access to the local network

Vulnerabilities and countermeasures (II)

- Unfortunately:
 - SEND is hard to deploy
 - Monitoring are (currently) easy to circumvent
 - Use of static entries in the Neighbor Cache does not scale
 - It is usually hard/undesirable to restrict access to the local network
- In summary,
 - The IPv6 situation is similar to that of the IPv4 world
 - Maybe a bit more complicated
 - See draft-gont-6man-nd-extension-headers

Auto-configuration

Brief overview

- Two autoconfiguration mechanisms for IPv6:
 - Stateless Address Auto-Configuration (SLAAC)
 - Based on ICMPv6
 - DHCPv6
 - Based on UDP
- SLAAC is mandatory, while DHCPv6 is optional
- Basic operation of SLAAC:
 - Host request configuration information with ICMPv6 Router Solicitations
 - Routers respond with Router Advertisements:
 - Auto-configuration prefixes
 - Routes
 - Network parameters
 - etc.

Vulnerabilities and counter-measures

- Spoofed Router Advertisements can be leveraged to perform:
 - Man In the Middle attacks
 - Denial of Service attacks
- Possible counter-measures:
 - Deploy SEND (in your dreams)
 - Monitor RS/RA messages (if you can)
 - Deploy RA-Guard (if Cisco fixes it)
 - Restrict access to the local network (if you can)

Vulnerabilities and counter-measures (II)

- Unfortunately,
 - SEND is hard to deploy
 - Monitoring tools are (currently) easy to circumvent
 - RA-Guard is (currently) easy to circumvent
 - It is usually hard/undesirable to restrict access to the local network
- In summary,
 - The IPv6 situation is a little bit more complicated than that of IPv4

IPsec Support

Hack In Paris 2012 Paris, France. June 18-22, 2012

 $\ensuremath{\mathbb{C}}$ 2012 SI6 Networks. All rights reserved

Brief overview and considerations

- Myth: "IPv6 is more secure than IPv4 because security was considered during the design of the protocol"
- This claim is usually based on the initial mandatory-ness of IPsec for IPv6
- In practice, such mandatory-ness has always been irrelevant:
 - IPsec **support** was mandatory (not its use!)
 - Implementations essentially ignored this requirement
 - The same IPsec deployment obstacles are present in IPv6
- Even the IETF acknowledged this fact
- Conclusion:
 - There is no reason to expect and increased use of IPsec with IPv6

Security Implications of Transition Technologies

Hack In Paris 2012 Paris, France. June 18-22, 2012

© 2012 SI6 Networks. All rights reserved

Brief overview

- Original transition plan: dual stack
 - Deploy IPv6 along IPv4, before actually needed it
 - This plan **failed**
- Current strategy is based on a toolbox:
 - Dual stack
 - Tunnels
 - Automatic
 - Configured
 - Translation
 - CGN
 - NAT64
- Most operating systems support a subset of these technologies

Security considerations

- Complexity of the resulting network is increased
- Single Points of Failure (SPoF) are introduced
- Some technologies raise privacy concerns:
 - Which networks does your tunneled traffic traverse?
 - This may (or may not) be a concern to your organization

Security considerations (II)

- Complexity of the resulting traffic is greatly increased
- Deep Packet Inspection is much harder to perform (if at all possible)
- Example: Structure of a Teredo packet:

IPv4 Header	UDP Header	IPv6 Header	IPv6 Extension Headers	TCP segment

• "Exercise": construct a libpcap filter to capture packets destined to host 2001:db8::1, TCP port 25

Security Implications of IPv6 on IPv4 Networks

Brief overview

- Most systems have some some IPv6 support enabled by default
 - Dual stack
 - Teredo
 - ISATAP
 - etc.
- As a result,
 - Most "IPv4 networks" have already partially deployed IPv6

Security considerations

- Dormant IPv6 support can be enabled
 - Sending Router Advertisements
 - Enabling transition/co-existence technologies
- Transition technologies may increase host exposure
 - Teredo enables NAT traversal
- As a result,
 - There are no "IPv4-only" networks
 - IPv6 security implications should also be considered for IPv4 networks
 - If you don't mean to employ IPv6, make sure that that is the case

Key areas in which further work is needed

Hack In Paris 2012 Paris, France. June 18-22, 2012

© 2012 SI6 Networks. All rights reserved

Areas in which further work is needed

- IPv6 implementations
 - They have not yet been thoroughly assessed
 - Few assessment tools (THC's and CPNI's)
 - Many bugs and vulnerabilities to be discovered
- IPv6 support in security devices
 - We need feature parity with IPv4
 - Otherwise, we cannot enforce the same security policies
- Education/Training
 - Deploying IPv6 without proper education/training is simply insane
 - Training is needed as different levels of each organization

Some conclusions

Some conclusions

- Beware of IPv6 marketing and mythology
 - They result in negative security implications
- IPv6 privides a similar service to that of IPv4
 - The actual *mechanisms* are different
 - Devil is in the detail
- Most systems include IPv6 support enabled by default
 - There are no "IPv4-only" networks
 - Every network should consider the IPv6 security implications
- Sooner or later you'll deploy IPv6
 - It is time to learn and experiment with IPv6 (you should have, already!)
 - Only then you should deploy it in production networks

Questions?

Merci!

Fernando Gont fgont@si6networks.com

IPv6 Hackers mailing-list

http://www.si6networks.com/community/

www.si6networks.com

Hack In Paris 2012 Paris, France. June 18-22, 2012

© 2012 SI6 Networks. All rights reserved