
Hacking IPv6 Networks

Fernando Gont
(UTN/FRH, Argentina)

Hack In Paris 2011
Paris, France. June 14-17, 2011

Agenda (I)

Objectives of this training
Motivation for IPv6
Brief comparision between IPv6 and IPv4
IPv6 Addressing Architecture
IPv6 Header Fields
IPv6 Extension Headers
IPv6 Options
Internet Control Message Protocol version 6 (ICMPv6)
Neighbor Discovery for IPv6
Address Resolution
Stateless Address Auto-configuration (SLAAC)

Agenda (II)

IPsec
Multicast Listener Discovery
Dynamic Host Configuration Protocol version 6 (DHCPv6)
DNS support for IPv6
IPv6 firewalls
Transition/co-existence technologies (6to4, Teredo, ISATAP, etc.)
Network reconnaissance in IPv6
Security Implications of IPv6 on IPv4-only networks
IPv6 deployment considerations

Objetives of this training

Provide an Introduction to IPv6
Provide an objetive discussion of IPv6 security issues
Identify and analyze a number of security aspects that must be
considered before deploying IPv6
Identify an analyze the security implications of IPv6 on IPv4 networks
Identify areas in which further work is needed
Draw some conclusions regarding IPv6 security

Some general considerations about IPv6
security

Some interesting aspects about IPv6 security

We have much less experience with IPv6 than with IPv4
IPv6 implementations are much less mature than their IPv4 counterparts.
Security products (firewalls, NIDS, etc.) have less support for IPv6 than for
IPv4
The complexity of the resulting network will greatly increase during the
transition/co-existence period:

Two internetworkin protocols (IPv4 and IPv6)
Increased use of NATs
Increased use of tunnels
Use of a plethora of transition/co-existence mechanisms

Lack of trained human resources

…and even then, IPv6 will be in many cases the only option on the table to
remain in this business

Brief comparision between
IPv6 and IPv4

Brief comparision between IPv6 and IPv4

IPv6 and IPv4 are very similar in terms of functionality (but not in terms of
mechanisms)

IPv4 IPv6
Addressing 32 bits 128 bits

Address Resolution ARP ICMPv6 NS/NA (+ MLD)

Auto-configuration DHCP & ICMP RS/RA ICMPv6 RS/RA & DHCPv6
(recommended) (+ MLD)

Fault Isolation ICMP ICMPv6

IPsec support Opcional Recommended (not
mandatory)

Fragmentation Both in hosts and routers Only in hosts

Brief comparision of IPv4 and IPv6 (II)

Header formats:

IPv6 header fields

IPv6 header fields
Basic header fields

IPv6 header

Fixed-length (40-bytes) header

Version

Identifies the Internet Protocol version number (“6” for IPv6)
It should match the “Protocol” specified by the underlying link-layer
protocol

If not, link-layer access controls could be bypassed

Traffic Class

Same as IPv4’s “Differentiated Services”
No additional “Quality of Service” (QoS) feature in IPv6, sorry
“Traffic Class” could be leveraged to receive differentiated service
This field should be policed at the network edge

Flow Label

The three-tuple {Source Address, Destination Address, Flow Label} was
meant to identify a communication flow.
Currently unused by many stacks – others use it improperly
Speficication of this header field, together with possible uses, is “work in
progress” at the IETF.
Potential vulnerabilities depend on the ongoing work at the IETF, but if
the Flow Label is predictable:

Might be leveraged to perform “dumb” (stealth) address scans
Might be leveraged to perform Denial of Service attacks

Payload Length

Specifies the length of the IPv6 packet (without including the length of
the fixed IPv6 header)
Maximum IPv6 packet is 65855 bytes. However, IPv6 “Jumbograms” can
be specified.
Among the basic checks:

The IPv6 Payload Length cannot be larger than the “payload size” reported
by the link-layer protocol

Next Header

Identifies the header/protocol type following this header.
Since IPv6 has a fixed-length header, options are included in “exntesion
headers” (i.e., headers that sit between the IPv6 header and the upper-
layer protocol)
In IPv6, packets follow a “header chain” type structure. E.g.,

IPv6
Header

IPv6
Header Destination Options

Header

Destination Options
Header

NH=60 NH=60

Dest. Options
Header

Dest. Options
Header TCP Segment

TCP Segment

NH=06NH=60

Hop Limit

Analogous to IPv4’s “Time to Live” (TTL)
Identifies the number of network links the packet may traverse
Packets are discarded when the Hop Limit is decremented to 0.
Could be leveraged for:

Detecting the Operating System of a remote node
Fingerprinting a remote physical device
Locating a node in the network topology
Evading Network Intrusion Detection Systems (NIDS)
Reducing the attack exposure of some hosts/applications

Hop Limit: Fingerprinting Devices or OSes

Different Oses use different defaults for the “Hop Limit” (typically a power
of two: 64, 128, etc.)
If packets originating from the same IPv6 addresses contain very different
“Hop Limits”, they might be originated by different devices. E.g.:

Packets from FTP server 2001:db8::1 arrive with a “Hop Limit” of 60
Packets from web server 2001:db8:::2 arrive with a “Hop Limit” of 124
We infer:

FTP server sets the Hop Limit to 64, and is 4 “routers” away
Web server sets the Hop Limit to 128, and is 4 “routers” away
Detecting the Operating System of a remote node

Note: mostly useless, since:
It requires different OSes behind the “middle-box”
There is only a reduced number of default “Hop Limit” values

Depending on the inferred original “Hop Limit”, the possible OS could be
guess (again, mostly useless)

Hop Limit: Locating a Node

Basic idea: if we are receiving packets from a node and assume that it is
using the default “Hop Limit”, we can infer the orginal “Hop Limit”
If we have multple “sensors”, we can “triangulate” the position of the
node

F is the only node that is:
• 4 “routers” from A
• 4 “routers” from B
• 4 “routers” from C
• 3 “routers” from D

62D

61C

61B

61A

Hop LimitSource

Hop Limit: Evading NIDS

Basic idea: set the Hop Limit to a value such that the NIDS sensor receives
the packet, but the target host does not.
Counter-measure: Normalize the “Hop Limit” at the network edge (to 64)
or block incomming packets with very small “Hop Limits” (e.g., smaller
than 10)

Hop Limit: Improving Security (GTSM)

GTSM: Generalized TTL Security Mechanism
Named after the IPv4 “TTL” field, but same concept applies to IPv6

It reduces the host/application exposure to attacks
The Hop Limit is set to 255 by the source host
The receiving host requires the Hop Limit of incoming packets to be of a
minimum value (255 for link-local applications)
Packets that do not pass this check are silently dropped
This mechanism is employed by e.g., BGP and IPv6 Neighbor Discovery
Example:

12:12:42.086657 2004::20c:29ff:fe49:ebdd > ff02::1:ff00:1: icmp6: neighbor sol: who has
2004::1(src lladdr: 00:0c:29:49:eb:dd) (len 32, hlim 255)
12:12:42.087654 2004::1 > 2004::20c:29ff:fe49:ebdd: icmp6: neighbor adv: tgt is
2004::1(RSO)(tgt lladdr: 00:0c:29:c0:97:ae) (len 32, hlim 255)

IPv6 Addressing Architecture

Brief Overview

The main driver for IPv6 is its increased address space
IPv6 uses 128-bit addresses
Similarly to IPv4,

Addresses are aggregated into “prefixes” (for routing purposes)
There are different address types (unicast, anycast, and multicast)
There are different address scopes (link-local, global, etc.)

It’s common for a node to be using, at any given time, several addresses,
of multiple types and scopes. For example,

One or more unicast link-local address
One or more global unicast address
One or more link-local address

Address Types

Can be identifies as follows:

(everything else)Global Unicast

FC00::/7Unique Local Unicast

FE80::/10Link-local unicast

FF00::/8Multicast

::1/128Loopback

::/128Unspecified

IPv6 prefixAddress Type

IPv6 Address Types
Unicast Addresses

Unicast Addresses

Global unicast
Meant for communication on the public Internet

Link-local unicast
Meant for communication within a network link/segment

Site-local unicast
Deprecated (were meant to be valid only within a site)

Unique Local unicast
Are expected to be globally unique, but not routable on the public Internet

Global Unicast Addresses

Syntax of the global unicast addresses:

The interface ID is typically 64-bis
Global Unicast Addresses can be generated with multiple different
criteria:

Use modified EUI-64 format identifierss (embed the MAC address)
“Privacy Addresses” (or some of their variants)
Manually-configured (e.g., 2001:db8::1)
As specified by some specific transition-co-existence technology

Global Routing Prefix Subnet ID Interface ID

| n bits | m bits | 128-n-m bits |

Link-local Unicast Addresses

Syntax of the link-local unicast addresses:

The Link-Local Unicast Prefix is fe80::/64
The interface ID is typically set to the modified EUI-64 format identifierss
(embed the MAC address)

Link Local Unicast Prefix Interface ID

| 64 bits | 64 bits |

Unique-local Unicast Addresses

Syntax of the unique-local unicast addresses:

The interface ID is typically 64-bis
Unique-local Unicast Addresses can be generated with multiple different
criteria:

Use modified EUI-64 format identifierss (embed the MAC address)
“Privacy Addresses” (or some of their variants)
Manually-configured (e.g., 2001:db8::1)

ULA Prefix Subnet ID Interface ID

| n bits | m bits | 128-n-m bits |

IPv6 Address Types
Multicast Addresses

Multicast Addresses

Identify a set of nodes
Can be of different scopes (interface local, link-local, global, etc.)
Some examples:

Solicited-NodeFF02:0:0:0:0:1:FF00::/104

All routers (site-local)FF05:0:0:0:0:0:0:2

All routers (link-local)FF02:0:0:0:0:0:0:2

All nodes (link-local)FF02:0:0:0:0:0:0:1

All routers (interface-local)FF01:0:0:0:0:0:0:2

All nodes (interface-local)FF01:0:0:0:0:0:0:1

UseMulticast address

IPv6 Address Types
Anycast Addresses

Anycast Addresses

Identify a node belonging to a set of nodes (e.g., some DNS server,
some DHCP server, etc.)
Packets sent to an anycast address are sent only to one of those nodes
(the nearest one, as from the point of view of the routing protocols).
Only a few anycast addresses have been specified:

Subnet-router

IPv6 Addressing
Implications on End-to-End Conectivity

Brief Overview

Because of the increased IPv6 address space, it is expected that each
device connected to the Internet will have a unique address
It is also assumed that this will “return” the “End-to-end Principle” to the
Internet:

The network is transparent to the communication of any two nodes (e.g.,
intermmediate nodes do not modify the TCP port numbers, etc.)
Any node can establish a communication node with any other node in the
network (e.g., the network does not filter “incoming connections”)
It is usually argued that the “end-to-end principle” allows for Innovation

Some Considerations

Even if each device has a unique address, that does not necessarily imply
“end-to-end” connectivity

This is not necessarily a desired property in a production network
Thus, a typical IPv6 subnet will be protected by a stateful firewall that only
allows “return traffic” (i.e., communications can only be initiated from the
inside network)

In practice, most production networks don’t really care about innovation,
but rather about getting work done.
And the users of these networks expect to use the same services
currently available for IPv4 without “end-to-end” connectivity(web, email,
social networks, etc.)

IPv6 Extension Headers

IPv6 Extension Headers
Fragment Header

Fragmentation Header

The fixed IPv6 header does not include support for
fragmentation/reassembly
If needed, such support is added by an Extension Header (Fragmentation
Header, NH=44)

| 8 bits | 8 bits | 13 bits | 2b |1b|

Fragment Offset: offset of the data following this header, relative to the start of the
fragmentable part of the original packet
M: “More Fragments” bit, as in the IPv4 header
Identification: together with the Source Address and Destination Address identifies
fragments that correspond to the same packet

Next Header Reserved Fragment Offset Res M

Identification

Fragmentation Example (legitimate)

ping6 output

% ping6 –s 1800 2004::1

PING 2004::1(2004::1) 1800 data bytes

1808 bytes from 2004::1: icmp_seq=1 ttl=64 time=0.973 ms

--- 2004::1 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.973/0.973/0.973/0.000 ms

tcpdump output

20:35:27.232273 IP6 2004::5e26:aff:fe33:7063 > 2004::1: frag (0|1448)
ICMP6, echo request, seq 1, length 1448

20:35:27.232314 IP6 2004::5e26:aff:fe33:7063 > 2004::1: frag (1448|360)

20:35:27.233133 IP6 2004::1 > 2004::5e26:aff:fe33:7063: frag (0|1232)
ICMP6, echo reply, seq 1, length 1232

20:35:27.233187 IP6 2004::1 > 2004::5e26:aff:fe33:7063: frag (1232|576)

Security Implications

Some are the same as for IPv4 fragmentation:
Stateful operation for a stateless protocol: risk of exhausting kernel memory
if the fragment reassembly buffer is not flushed properly
Predictable Identification values might allow “stealth” port scanning
technique

Others are different:
The Identification field is much larger: chances of “IP ID collisions” are
reduced
Note: Overlapping fragments have been recently forbidden (RFC 5722) – but
they are still allowed by many Oses

Fragment Header
IPv6 idle scan?

Example of Predictable Identification values

tcpdump output (% ping6 –s 1800 2004::1)

1. IP6 (hlim 64, next-header Fragment (44) payload length: 1456)
2004::5e26:aff:fe33:7063 > 2004::1: frag (0x0000007a:0|1448) ICMP6, echo
request, length 1448, seq 1

2. IP6 (hlim 64, next-header Fragment (44) payload length: 368)
2004::5e26:aff:fe33:7063 > 2004::1: frag (0x0000007a:1448|360)

3. IP6 (hlim 64, next-header Fragment (44) payload length: 1240) 2004::1 >
2004::5e26:aff:fe33:7063: frag (0x4973fb3d:0|1232) ICMP6, echo reply,
length 1232, seq 1

4. IP6 (hlim 64, next-header Fragment (44) payload length: 584) 2004::1 >
2004::5e26:aff:fe33:7063: frag (0x4973fb3d:1232|576)

5. IP6 (hlim 64, next-header Fragment (44) payload length: 1456)
2004::5e26:aff:fe33:7063 > 2004::1: frag (0x0000007b:0|1448) ICMP6, echo
request, length 1448, seq 2

6. IP6 (hlim 64, next-header Fragment (44) payload length: 368)
2004::5e26:aff:fe33:7063 > 2004::1: frag (0x0000007b:1448|360)

7. IP6 (hlim 64, next-header Fragment (44) payload length: 1240) 2004::1 >
2004::5e26:aff:fe33:7063: frag (0x2b4d7741:0|1232) ICMP6, echo reply,
length 1232, seq 2

8. IP6 (hlim 64, next-header Fragment (44) payload length: 584) 2004::1 >
2004::5e26:aff:fe33:7063: frag (0x2b4d7741:1232|576)

Revision TCP Connection-Establishment

Connection-established Connection-rejected

Forged TCP Connection-Establishment

Open port Closed port

IPv6 Idle Scan

Open port Closed port

IPv6 Idle Scan

This “dumb scan” technique allows for a very stealthy port scan
It only requires an “inactive” host to be used as “zombie”
Clearly, we didn’t learn the lesson from IPv4
Vulnerable implementations:

Linux
Possibly others

Relevant vendors have been notified (today)

sysctl’s for frag/reassembly

net.inet6.ip6.maxfragpackets: maximum number of fragmented
packets the node will accept (defaults to 200 in OpenBSD and 2160 in
FreeBSD)

0: the node does not accept fragmented traffic
-1: there’s no limit on the number of fragmented packets

net.inet6.ip6.maxfrags: maximum number of fragments the node
will accept (defaults to 200 in OpenBSD and 2160 in FreeBSD)

0: the node will not accept any fragments
-1: there is no limit on the number of fragments

IPv6 Extension Headers
Implications on Firewalls

Brief Overview of the IPv4 Situation

IPv4 has a variable-length (20-60 bytes) header, and a minimum MTU of
68 bytes. The following information can be assumed to be present on
every packet:

Brief Overview of the IPv4 Situation

IPv4 has a variable-length (20-60 bytes) header, and a minimum MTU of
68 bytes. The following information can be assumed to be present on
every packet:

Brief Overview of the IPv6 Situation

The variable length-header has been replaced by a fixed-length (40
bytes) header
Any IPv6 options are included in “extension headers” that form a “header
chain”
For example,

IPv6
Header

IPv6
Header Dest. Options

Header

Dest. Options
Header TCP SegmentTCP Segment

NH=60 NH=06

Problem Statement

The specifications allow for the use of multiple extension headers, even
of the same type – and implementations support this.
Thus, the structure of the resulting packet becomes increasingly complex,
and packet filtering becomes virtually impossible.
For example:

IPv6
Header

IPv6
Header Destination Options

Header

Destination Options
Header

NH=60 NH=60

Dest. Options
Header

Dest. Options
Header TCP Segment

TCP Segment

NH=06NH=60

Problem Statement (II)

Example of Destination Options and Fragmentation:

IPv6
Header

IPv6
Header Destination Options

Header

Destination Options
Header

NH=60 NH=06

TCP Segment
TCP Segment

IPv6
Header

IPv6
Header

NH=44

Fragment
Header

Fragment
Header

NH=60

Destination Options
Header

Destination Options
Header

NH=06

IPv6
Header

IPv6
Header

NH=44

Fragment
Header

Fragment
Header Dest. Opt.

Header

Dest. Opt.
Header TCP Segment

TCP Segment

NH=60

Original
Packet

First
Fragment

Second
Fragment

Problem Statement (III)

Two Destination Options headers, and a Fragment Header:

Original
Packet

First
Fragment

Second
Fragment

IPv6
Header

IPv6
Header Destination Options

Header

Destination Options
Header

NH=60 NH=60

Dest. Options
Header

Dest. Options
Header TCP Segment

TCP Segment

NH=06NH=60

IPv6
Header

IPv6
Header Fragment

Header

Fragment
Header

NH=44 NH=60

Dest. Options
Header

Dest. Options
Header

NH=60

IPv6
Header

IPv6
Header Fragment

Header

Fragment
Header

NH=44 NH=60

D. Opt.
Hdr.

D. Opt.
Hdr. Dest. Options

Header

Dest. Options
Header TCP Segment

TCP Segment

NH=06

Possible Countermeasures

Use a stateful firewall that reassembles the fragments, and then applies
the packet filtering rules
Filter (in firewalls and/or hosts) packets with specific combinations of
extension headers:

Packets with multiple extension headers (e.g., more than 5)
Packets that combine fragmentation and other extension headers

The possible countermeasures are reduced if filtering is to be performed
in layer-2 devices (e.g., RA-Guard)

Some Conclusions

IPv6 can be easily leveraged for evading firewalls.
Most likely, firewalls will block packets with extension headersEs muy
probable que se haga común el filtrado (en firewalls) de paquetes que
contengan en encabezados de extensión
The result will be: less flexibility, possibly preventing any use of IPv6
exntesion headers

Internet Control Message Protocol version 6
(ICMPv6)

Internet Control Message Protocol version 6

ICMP is a core protocol of the IPv6 suite, and is used for:
Fault isolation (ICMPv6 errors)

Troubleshooting (ICMPv6 echo request/response)
Address Resolution
Stateless address autoconfiguration

Contrary to ICMPv4, ICMPv6 is mandatory for IPv6 operation

ICMPv6
Error Messages

Fault Isolation (ICMPv6 error messages)

A number of ICMPv6 error messages are specified in RFC 4443:
Destination Unreachable

No route to destination
Beyond scope of source address
Port Unreachable, etc.

Packet Too Big
Time Exceeded

Hop Limit Exceeded in Transit
Fragment reassembly time exceeded

Parameter Problem
Erroneous header field encountered
Unrecognized Nect Header type encountered
Unrecognized IPv6 option encountered

ICMP Redirect

Clearly, most of them parallel their ICMP counter-parts

Hop Limit Exceeded in Transit

Are generated when the Hop Limit of a packet is decremented to 0.
Typically leveraged by traceroute tool
Example:

% traceroute 2004:1::30c:29ff:feaf:1958
traceroute to 2004:1::30c:29ff:feaf:1958 (2004:1::30c:29ff:feaf:1958) from
2004::5e26:aff:fe33:7063, port 33434, from port 60132, 30 hops max, 60 byte
packets
1 2004::1 0.558 ms 0.439 ms 0.500 ms
2 2004::1 2994.875 ms !H 3000.375 ms !H 2997.784 ms !H

Hop Limit Exceeded in Transit (II)

Tcpdump trace:

1. IP6 (hlim 1, next-header UDP (17) payload length: 20)
2004::5e26:aff:fe33:7063.60132 > 2004:1::30c:29ff:feaf:1958.33435:
[udp sum ok] UDP, length 12

2. IP6 (hlim 64, next-header ICMPv6 (58) payload length: 68) 2004::1 >
2004::5e26:aff:fe33:7063: [icmp6 sum ok] ICMP6, time exceeded in-
transit, length 68 for 2004:1::30c:29ff:feaf:1958

3. IP6 (hlim 2, next-header UDP (17) payload length: 20)
2004::5e26:aff:fe33:7063.60132 > 2004:1::30c:29ff:feaf:1958.33436:
[udp sum ok] UDP, length 12

4. IP6 (hlim 64, next-header ICMPv6 (58) payload length: 68) 2004::1 >
2004::5e26:aff:fe33:7063: [icmp6 sum ok] ICMP6, destination
unreachable, length 68, unreachable address 2004:1::30c:29ff:feaf:1958

Hop Limit Exceeded in Transit (III)

Use of traceroute6 for network reconnaissance could be mitigated by:
filtering outgoing “Hop Limit Exceeded in transit” at the network perimeter,

or,
by normalizing the “Hop Limit” of incoming packets at the network
perimeter

Note: NEVER normalize the “Hop Limit” to 255 (or other large value) –use
“64” instead

ICMPv6 Connection-Reset Attacks

Some ICMPv6 messages are assumed to indicate “hard errors”
Some stacks used to abort TCP connections when hard errors were
received
BSD-derived and Linux implementations don’t – Good! ;-)
Others?

ICMPv6 PMTUD Attacks

ICMPv6 PTB messages are used for Path-MTU discovery
The security implications of these messages are well-known (remember
“ICMP attacks against TCP” back in 2004?)
The mitigations are straightforward:

Check the embedded packet for things like TCP Squence number, etc.

Anyway, the MTU should not be reduced to a value less than 1280. If a
smaller MTU is reported, the receiving node is just required to include a
fragmentation header.
sysctl’s (OpenBSD)

net.inet6.icmp6.mtudisc_hiwat (defaults to 1280): Maximum
number of routes created in response to ICMP PTBs
net.inet6.icmp6.mtudisc_lowat (defaults to 256): Maximum
number of routes created in response to (unverified) ICMP PTBs

ICMPv6 Redirects

ICMP redirects are very similar to the ICMP counterpart, except for:
The Hop Limit is required to be 255

ICMPv6 redirects are an optimization – hence they can be disabled with
no interoperability implications
Whether ICMPv6 are accepted is controlled in *BSD’s with the sysctl
net.inet6.icmp6.rediraccept. In OpenBSD, it defaults to 1 (on).

ICMPv6
Informational Messages

ICMPv6 Informational

Echo Request/Echo response:
Used to test node reachability (“ping6”)
Widely supported, although disabled by default in some OSes

Node Information Query/Response
Specified by RFC 4620 as “Experimental”, but supported (and enabled by
default) in KAME.
Not supported in other stacks
Used to obtain node names or addresses.

ICMPv6 Echo Request/Echo response

Used for the “ping6” tool, for troubleshooting
Also usually exploited for network reconnaissance
Some implementations ignore incoming ICMPv6 “echo requests”
Example:

% ping6 2004::1
PING 2004::1(2004::1) 56 data bytes
64 bytes from 2004::1: icmp_seq=1 ttl=64 time=28.4 ms

--- 2004::1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.460/28.460/28.460/0.000 ms

tcpdump output

1. IP6 2004::5e26:aff:fe33:7063 > 2004::1: ICMP6, echo request, seq 1,
length 64

2. IP6 2004::1 > 2004::5e26:aff:fe33:7063: ICMP6, echo reply, seq 1,
length 64

sysctl’s for ICMPv6 Echo Request

No sysctl’s in BSD’s or Linux
ICMPv6 Echo requests can nevertheless be filtered in firewalls
Might want to filter ICMPv6 Echo Requests in hosts (but not in routers)

Node Information Query/Response

Specified in RFC 4620 as “Experimental”, but included (and enabled by
default) in KAME
Allows nodes to request certain network information about a node in a
server-less environment

Queries are sent with a target name or address (IPv4 or IPv6)
Queried information may include: node name, IPv4 addresses, or IPv6
addresses

Node Information Queries can be sent with the ping6 command (“-w”
and “-b” options)

Node Information Query/Response (II)

Response to Node Information Queries is controlled by the sysctl
net.inet6.icmp6.nodeinfo:

0: Do not respond to Node Information queries
1: Respond to FQDN queries (e.g., “ping6 –w”)
2: Respond to node addresses queries (e.g., “ping6 –a”)
3: Respond to all queries

net.inet6.icmp6.nodeinfo defaults to 1 in OpenBSD, and to 3 in
FreeBSD.
My take: unless you really need your nodes to support Node Information
messages, disable it (i.e., “sysctl –w net.inet6.icmp6.nodeinfo=0).

Some examples with ICMPv6 NI (I)

Query node names

$ ping6 -w ff02::1%vic0

PING6(72=40+8+24 bytes) fe80::20c:29ff:feaf:194e%vic0 --> ff02::1%vic0
41 bytes from fe80::20c:29ff:feaf:194e%vic0: openbsd46.my.domain.
30 bytes from fe80::20c:29ff:fe49:ebdd%vic0: freebsd
41 bytes from fe80::20c:29ff:feaf:194e%vic0: openbsd46.my.domain.
30 bytes from fe80::20c:29ff:fe49:ebdd%vic0: freebsd
41 bytes from fe80::20c:29ff:feaf:194e%vic0: openbsd46.my.domain.
30 bytes from fe80::20c:29ff:fe49:ebdd%vic0: freebsd
--- ff02::1%vic0 ping6 statistics ---
3 packets transmitted, 3 packets received, +3 duplicates, 0.0% packet loss

Some examples with ICMPv6 NI (II)

Query addresses

$ ping6 -a Aacgls ff02::1%vic0

PING6(72=40+8+24 bytes) fe80::20c:29ff:feaf:194e%vic0 --> ff02::1%vic0
76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
fe80::20c:29ff:fe49:ebdd(TTL=infty)
::1(TTL=infty) fe80::1(TTL=infty)

76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
fe80::20c:29ff:fe49:ebdd(TTL=infty)
::1(TTL=infty) fe80::1(TTL=infty)

76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
fe80::20c:29ff:fe49:ebdd(TTL=infty)
::1(TTL=infty)
fe80::1(TTL=infty)

--- ff02::1%vic0 ping6 statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss

Some examples with ICMPv6 NI (III)

Use the NI multicast group

$ ping6 -I vic0 -a Aacgls -N freebsd

PING6(72=40+8+24 bytes) fe80::20c:29ff:feaf:194e%vic0 --> ff02::1%vic0
76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
fe80::20c:29ff:fe49:ebdd(TTL=infty)
::1(TTL=infty) fe80::1(TTL=infty)

76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
fe80::20c:29ff:fe49:ebdd(TTL=infty)
::1(TTL=infty) fe80::1(TTL=infty)

76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
fe80::20c:29ff:fe49:ebdd(TTL=infty)
::1(TTL=infty)
fe80::1(TTL=infty)

--- ff02::1%vic0 ping6 statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss

Address Resolution

Address Resolution in IPv6

Employs ICMPv6 Neighbor Solicitation and Neighbor Advertisement
It (roughly) works as follows:
1. Host A sends a NS: Who has IPv6 address 2001:db8::1?
2. Host B responds with a NA: I have IPv6 address, and the corresponding MAC

address is 06:09:12:cf:db:55.
3. Host A caches the received information in a “Neighbor Cache” for some

period of time (this is similar to IPv4’s ARP cache)
4. Host A can now send packets to Host B

Neighbor Solicitation Messages

ICMPv6 messages of Typo 135, Code 0
Used to solicit the mapping of an IPv6 address to a link-layer address
Only allowed option so far: “Source Link-layer address”

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Code | Checksum |
+-+
| Reserved |
+-+
| |
// Target Address //
| |
+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-

Neighbor Advertisement Messages

ICMPv6 messages of Typo 136, Code 0
Use to informa the maping of a IPv6 address to a link-layer address
Only allowed option so far: “Target Link-layer address”

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type | Code | Checksum |
+-+
|R|S|O| Reserved |
+-+
| |
+ +
| |
+ Target Address +
| |
+ +
| |
+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-

Source/Target Link-layer Address Options

The Source Link-layer Address contains the link-layer address
corresponding to the “Source Address” of the packet
The Target Link-layer address contains the link-layer address
correspondign to the “Target Address” of the Neighbor Solicitation
message.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length | Link-Layer Address ...
+-+

Type: 1 for Source Link-layer Address
2 for Target Link-layer Address

Sample Address Resolution Traffic

% ping6 2004::1

12:12:42.086657 2004::20c:29ff:fe49:ebdd > ff02::1:ff00:1: icmp6: neighbor
sol: who has 2004::1(src lladdr: 00:0c:29:49:eb:dd) (len 32, hlim 255)

12:12:42.087654 2004::1 > 2004::20c:29ff:fe49:ebdd: icmp6: neighbor adv:
tgt is 2004::1(RSO)(tgt lladdr: 00:0c:29:c0:97:ae) (len 32, hlim 255)

12:12:42.089147 2004::20c:29ff:fe49:ebdd > 2004::1: icmp6: echo request
(len 16, hlim 64)

12:12:42.089415 2004::1 > 2004::20c:29ff:fe49:ebdd: icmp6: echo reply (len
16, hlim 64)

Neighbor Cache

Stores information learned from the Address Resolution mechanism
Each entry (IPv6 address, link-layer address) can be in one of the
following states:

Not known to be reachble (probes being sent)PROBE

Not known to be reachable (wait for indication)DELAY

Not known to be reachableSTALE

Neighbor is reachableREACHABLE

Add. Res. Is in progress (not yet determined)INCOMPLETE

SemanticsNC entry state

Neighbor Cache (contents)

Sample output of “ndp –a” (BSDs):

% ndp -a
Neighbor Linklayer Address Netif Expire S Flags
2004:1::f8dd:347d:8fd8:1d2c 0:c:29:49:eb:e7 em1 permanent R
fe80::20c:29ff:fec0:97b8%em1 0:c:29:c0:97:b8 em1 23h48m16s S R
2004:1::20c:29ff:fe49:ebe7 0:c:29:49:eb:e7 em1 permanent R
fe80::20c:29ff:fe49:ebe7%em1 0:c:29:49:eb:e7 em1 permanent R
2004::1 0:c:29:c0:97:ae em0 23h49m27s S R
2004::20c:29ff:fe49:ebdd 0:c:29:49:eb:dd em0 permanent R
fe80::20c:29ff:fe49:ebdd%em0 0:c:29:49:eb:dd em0 permanent R
fe80::20c:29ff:fec0:97ae%em0 0:c:29:c0:97:ae em0 23h48m16s S R
2004::d13e:2428:bae7:5605 0:c:29:49:eb:dd em0 permanent R

Neighbor Cache (prefixes)

Sample output of “ndp –p” (BSDs):

% ndp -p
2004::/64 if=em0
flags=LAO vltime=2592000, pltime=604800, expire=29d23h57m4s, ref=2
advertised by
fe80::20c:29ff:fec0:97ae%em0 (reachable)

2004:1::/64 if=em1
flags=LAO vltime=2592000, pltime=604800, expire=29d23h50m34s, ref=2
advertised by
fe80::20c:29ff:fec0:97b8%em1 (reachable)

fe80::%em1/64 if=em1
flags=LAO vltime=infinity, pltime=infinity, expire=Never, ref=0
No advertising router

fe80::%em0/64 if=em0
flags=LAO vltime=infinity, pltime=infinity, expire=Never, ref=0
No advertising router

fe80::%lo0/64 if=lo0
flags=LAO vltime=infinity, pltime=infinity, expire=Never, ref=0
No advertising router

Neighbor Cache (default routers)

Sample output of “ndp –r” (BSDs):

% ndp -r
fe80::20c:29ff:fec0:97b8%em1 if=em1, flags=, pref=medium, expire=20m23s
fe80::20c:29ff:fec0:97ae%em0 if=em0, flags=, pref=medium, expire=26m53s

Address Resolution
sample attacks…

Some Address Resolution Games

Neighbor Cache Poisoning attacks – the v6 version of V4’s ARP cache
poisoning

The attacker simply listens to Neighbor Solicitations for Target addresses he
is interested in, and responds with Neighbor Advertisements that contain his
own link-layer address
Goal: Denial of Service or “man in the middle”

Advertising “special” link-layer addresses, e.g.,
The broadcast Ethernet address (ff:ff:ff:ff:ff:ff)
Multicast Ethernet addresses (e.g., 33:33:00:00:01)
The link-layer address of the node sending the Neighbor Solicitation – this
introduces a forwarding loop if the victim is a router!
All BSD variants tested don’t check for these special addresses!

Overflowing the Neighbor Cache

Some implementations (FreeBSD, NetBSD) don’t enforce limits on the
number of entries that can be created in the Neighbor Cache
Attack:

Send a large number of Neighbor Solicitation messages with a Source Link-
layer address
For each received packet, the victim host creates an entry in the neighbor
Cache
And if entries are added at a faster rate than “old entries” are pruned from
the Neighbor Cache....

Overflowing the Neighbor Cache (II)

“Man in the Middle” or Denial of Service

Without proper authentication mechanisms in place, its trivial for an
attacker to forge Neighbor Discovery messages
Attack:

“Listen” to incoming Neighbor Solicitation messages, with the victim’s IPv6
address in the “Target Address” field
When a NS is received, respond with a forged Neighbor Advertisement

If the “Target Link-layer address” corresponds to a non-existing node,
traffic is dropped, resulting in a DoS.
If the “Target Link-layer address” is that of the attacker, he can perform a
“man in the middle” attack.

Some Address Resolution Games

Neighbor Cache Poisoning attacks – the v6 version of V4’s ARP cache
poisoning

The attacker simply listens to Neighbor Solicitations for Target addresses he
is interested in, and responds with Neighbor Advertisements that contain his
own link-layer address

Advertising “special” link-layer addresses, e.g.,
The broadcast Ethernet address (ff:ff:ff:ff:ff:ff)
Multicast Ethernet addresses (e.g., 33:33:00:00:01)
The link-layer address of the node sending the Neighbor Solicitation – this
introduces a forwarding loop if the victim is a router!
All BSD variants tested don’t check for these special addresses!

Not much support in layer-2 security boxes to mitigate these attacks
Open source tools do exist. E.g., NDPMon, available at:
http://ndpmon.sourceforge.net

sysctl’s for Neighbor Discovery (OpenBSD)

net.inet6.ip6.neighborgcthresh (defaults to 2048): Maximum
number of entries in the Neighbor Cache
net.inet6.icmp6.nd6_prune (defaults to 1): Interval between
Neighbor Cache babysitting (in seconds).
net.inet6.icmp6.nd6_delay (defaults to 5): specifies the
DELAY_FIRST_PROBE_TIME constant from RFC 4861.
net.inet6.icmp6.nd6_umaxtries (defaults to 3): specifies the
MAX_UNICAST_SOLICIT constant from RFC 4861
net.inet6.icmp6.nd6_mmaxtries (defaults to 3): specifies the
MAX_MULTICAST_SOLICIT constant from RFC 4861.
net.inet6.icmp6.nd6_useloopback (defaults to 1): If non-zero, uses
the loopback interface for local traffic.
net.inet6.icmp6.nd6_maxnudhint (defaults to 0): Maximum number
of upper-layer reachability hints before normal ND is performed.

IPv6 Stateless Address
Autoconfiguration (SLAAC)

Stateless Address Autoconfiguration

It works (roughly) as follows:
1. The host configures a link-local address
2. It checks that the address is unique – i.e., it performs Duplicate Address

Detection (DAD) for that address
Sends a NS, and waits for any answers

3. The host sends a Router Solicitation message
4. When a Router Advertisement is received, it configures a “tentative” IPv6

address
5. It checks that the address is unique – i.e., it performs Duplicate Address

Detection (DAD) for that address
Sends a NS, and waits for any answers

6. If the address is unique, it typically becomes a “preferred” address

Address Autoconfiguration flowchart

Router Solicitation Messages

ICMPv6 messages of Type 133, Code 0
Used to solicit network configuration information to local routers
Only allowed option so far: Source Link-layer Address

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Code | Checksum |
+-+
| Reserved |
+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-

Router Advertisement Messages

ICMPv6 messages of Type 134, Code 0
Used to announce network configuration information to local hosts

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Code | Checksum |
+-+
| Cur Hop Limit |M|O|H|Prf|Resvd| Router Lifetime |
+-+
| Reachable Time |
+-+
| Retrans Timer |
+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-

Possible Options in RA messages

ICMPv6 Router Advertisements may contain the following options:
Source Link-layer address
Prefix Information
MTU
Route Information
Recursive DNS Server

Usually, they include many of them

Prefix Information Option

Identified by a Type of 3
Specifies “on-link” and “auto-configuration” prefixes

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length | Prefix Length |L|A|R|Reserved1|
+-+
| Valid Lifetime |
+-+
| Preferred Lifetime |
+-+
| Reserved2 |
+-+
| |
// Prefix //
| |
+-+

Router Information Option

Identified by a Type of 24
Advertises specific routes, with different priorities

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length | Prefix Length |Resvd|Prf|Resvd|
+-+
| Route Lifetime |
+-+
| Prefix (Variable Length) |
. .
. .
+-+

MTU Option

Identified by a Type of 5
Specifies the MTU to be used for this link

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length | Reserved |
+-+
| MTU |
+-+

RDNSS Option

Identified by a Type of 24
Used to advertise recursive DNS servers

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length | Reserved |
+-+
| Lifetime |
+-+
| |
: Addresses of IPv6 Recursive DNS Servers :
| |
+-+

Sample Configuration

Sample output of “ifconfig –a” (BSDs):

ifconfig -a
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM>
ether 00:0c:29:49:eb:dd
inet 10.0.0.42 netmask 0xffffff00 broadcast 10.0.0.255
inet6 fe80::20c:29ff:fe49:ebdd%em0 prefixlen 64 scopeid 0x1
inet6 2004::20c:29ff:fe49:ebdd prefixlen 64 autoconf
inet6 2004::d13e:2428:bae7:5605 prefixlen 64 autoconf temporary
nd6 options=23<PERFORMNUD,ACCEPT_RTADV,AUTO_LINKLOCAL>
media: Ethernet autoselect (1000baseT <full-duplex>)
status: active

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
options=3<RXCSUM,TXCSUM>
inet 127.0.0.1 netmask 0xff000000
inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5
nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>

Sample Configuration

Sample output of “netstat –r –p ip6” (BSDs):

netstat –r –p ip6
Internet6:
Destination Gateway Flags Netif Expire
:: localhost UGRS lo0 =>
default fe80::20c:29ff:fec UG em1
localhost localhost UH lo0
::ffff:0.0.0.0 localhost UGRS lo0
2004:1:: link#2 U em1
2004:1::20c:29ff:f link#2 UHS lo0
2004:1::f8dd:347d: link#2 UHS lo0
fe80:: localhost UGRS lo0
fe80::%em1 link#2 U em1
fe80::20c:29ff:fe4 link#2 UHS lo0
fe80::%lo0 link#5 U lo0
fe80::1%lo0 link#5 UHS lo0
ff01:1:: fe80::20c:29ff:fe4 U em0
ff01:2:: fe80::20c:29ff:fe4 U em1
ff01:5:: localhost U lo0
ff02:: localhost UGRS lo0
ff02::%em1 fe80::20c:29ff:fe4 U em1
ff02::%lo0 localhost U lo0

IPv6 SLAAC
some sample attacks…

Disable an Existing Router

Forge a Router Advertisement message that impersontes the local router
Set the “Router Lifetime” to 0 (or some other small value)
As a result, the victim host will remove the router from the “default
routers list”

Exploit DAD for Denial of Service

Listen to Neighbor Solicitation messages with the Source Address set to
the IPv6 “unspecified” address (::).
When such a message is received, respond with a Neighbor
Advertisement message
As a resul, the address will be considered non-unique, and DAD will fail.
The host will not be able to use that “tentative” address

Advertise Malicious Network Parameters

An attacker could advertise malicious network parameters for the
purpose of Denial of Service or performance-degrading.
A very small MTU could lead to an increae of the header/data ratio, and
possibly to DoS if the victim fails to validate the advertised MTU
A very small Current Hop Limit would packets to be discarded by the
intervenning routers

IPv6 SLAAC
Some sysctl’s…

sysctl’s for autoconf (OpenBSD)

net.inet6.ip6.accept_rtadv (defaults to 1): Controls whether
Router Advertisements are accepted.
net.inet6.ip6.dad_count (defaults to 1): Number of DAD probes
sent when an interface is first brought up
net.inet6.ip6.maxifprefixes (defaults to 16): Maximum number of
prefixes per interface.
net.inet6.ip6.maxifdefrouters (defaults to 16): maximum number
fo default routers per interface.

Autoconf Addresses & Privacy

Addresses selected as part of stateless autoconfiguration contain a
modified version of the MAC address of the interface
The MAC address is globally-unique, and non-changing (OUI assigned by
the IEEE to the vendor, plus a 3-byte number selected by the vendor)
There were concerns that autoconf addresses hurt privacy, as they could
be used to correlate network activity
Privacy addresses (RFC 4941) were introduced for that purpose

They basically set the Interface ID to a random number, and are short
They are short-lived
They tend to be painful for the purpose of logging

sysctl’s for Privacy Addresses

Privacy extensions for autoconf is implemented in FreeBSD (but not in,
e.g., OpenBSD)
These sysctl’s control their operation:

net.inet6.ip6.use_tempaddr (defaults to 0)
Controls whether Privacy addresses are configured

net.inet6.ip6.temppltime (defaults to 86400)
Specifies the “preferred lifetime” for privacy addresses

net.inet6.ip6.tempvltime (defaults to 604800)
Specifies the “valid lifetime” for privacy addresses

net.inet6.ip6.prefer_tempaddr (defaults to 0)
Controls whether privacy addresses are “preferred” (i.e., whether outgoing
“conections” should use privacy addresses)

IPv6 SLAAC
Router Advertisement Guad (RA-Guard)

Router Advertisement Guard

Many organizations employ “RA-Guard” as the first line of defense
against attacks based on forged Router-Advertisements
RA-Guard works (roughly) as follows:

A layer-2 device is configured such that it accepts Router Advertisements on
a specified port.
Router Advertisement messages received on other port are silently dropped
(At layer-2)

The RA-Guard mechanism relies on the device’s ability to identify Router
Advertisement messages

IPv6 SLAAC
RA-Guard evasion

Problem Statement

As noted before, the specifications allow for the use of multiple extension
headers, even of the same type – and implementations support this.
This is even allowed for Neighbor Discovery messages, that currently
make no legitimate use of IPv6 Extension Headers.
Thus, the structure of the resulting packet becomes increasingly complex,
and packet filtering becomes virtually impossible.
For example,

IPv6
Header

IPv6
Header Destination Options

Header

Destination Options
Header

ICMPv6
Router

Advertisement

ICMPv6
Router

Advertisement

NH=60 NH=58

Problem Statement (II)

Combination of a Destination Options header and fragmentation:

Original
Packet

First
Fragment

Second
Fragment

IPv6
Header
IPv6

Header Destination Options
Header

Destination Options
Header

ICMPv6
Router

Advertisement

ICMPv6
Router

Advertisement

NH=60 NH=58

IPv6
Header

IPv6
Header

NH=44

Fragmentation
Header

Fragmentation
Header

NH=60

Destination Options
Header

Destination Options
Header

NH=58

IPv6
Header

IPv6
Header Fragmentation

Header

Fragmentation
Header Dest. Options

Header

Dest. Options
Header

NH=44 NH=60 NH=58

ICMPv6
Router

Advertisement

ICMPv6
Router

Advertisement

Problem Statement (III)

Two Destination Options headers, and fragmentation:

Original
Packet

First
Fragment

Second
Fragment

IPv6
Header

IPv6
Header Fragment

Header

Fragment
Header

NH=44 NH=60

Dest. Options
Header

Dest. Options
Header

NH=60

IPv6
Header

IPv6
Header Fragment

Header

Fragment
Header

NH=44 NH=60

D. Opt.
Hdr.

D. Opt.
Hdr. Dest. Options

Header

Dest. Options
Header

ICMPv6
Router

Advertisement

ICMPv6
Router

Advertisement

NH=58

IPv6
Header

IPv6
Header Destination Options

Header

Destination Options
Header

NH=60 NH=60

Dest. Options
Header

Dest. Options
Header

ICMPv6
Router

Advertisement

ICMPv6
Router

Advertisement

NH=58

Some Conclusions

The use of a single “Destination Options” header is enough to evade
most implementations of RA-Guard.
If a Fragment Header is combined with two Destination Options headers,
it becomes impossible for layer-2 device to filter forged Router
Advertisements.
This technique can also be exploited to circumvent Neighbor Discover
monitoring tools such as NDPMon
See my ongoing work on RA-Guard evasion:

http://tools.ietf.org/id/draft-gont-v6ops-ra-guard-evasion-01.txt
http://tools.ietf.org/id/draft-gont-6man-nd-extension-headers-01.txt
Or http://tools.ietf.org/id/gont

Dynamic Host Configuration Protocol
version 6 (DHCPv6)

Brief Overview

IPv6 version of DHCPv4: mechanism for stateful configuration
It implements “prefix delegation”, such that a DHCPv6 server can assign
not only an IPv6 address, but also an IPv6 prefix.
It is an optional mechanism which is invoked only if specified by Router
Advertisement messages.
It used to be the only mechanism available to advertise recursive DNS
servers
It can be exploited in a similar way to Router Advertisement messages.
It suffers the same problems as IPv6 SLAAC:

If no authentication is enforced, it is trivial for an attacker to forge DHCPv6
packets
Layer2- mitigations can be easily circumvented with the same techniques as
for RA-Guard

Multicast Listener Discovery

Brief Overview

A generic protocol that allows hosts to inform local routers which
multicast groups they are interested in.
Routers use thi infomation to decide which packets must be forwarded to
the local segment.
Since Neighbor Discovery uses multicast addresses (the solicited-node
multicast addresse), MLD is used by all IPv6 nodes
In practice, the only use for MLD with Neighbor Discovery is MLD-
snooping switches – switches that interpret MLD packet to decide on
which ports packets should be forwarded.
Potential issues: If a MLD-snooping switch is employed, MLD could be
exploited for Denial of Service attacks.
MLDv2 implements per-source filtering capabilities, and greatly increases
the complexity of MLD(v1).
Security-wise, MLDv1 should be preferred.

IPsec Support

Brief overview and considerations

IPsec support is currentlymantatory for IPv6 implementations – the IETF
is changing this requirement to “optional” thus acknowledging reality.
Anyway, in practice this is irrelevant:

What was mandatory was IPsec support – not IPsec use.
Also, many IPv4 implementations support IPsec, while many IPv6
implementations do not.

Most of the key problems (e.g., PKI) for IPsec deployment in IPv4 apply to
IPv6, as well.
There is no reason to believe that IPv6 will result in an increased use of
IPsec.

DNS support for IPv6

Brief Overview

AAAA (Quad-A) records enable the mapping of domain names to IPv6
addresses
The zone “ip6.arpa” is used for the reverse mapping (i.e., IPv6 addresses
to domain names)
DNS transport can be IPv4 and/or IPv6
Troubleshooting tools such as “dig” already include support for IPv6 DNS
features
Security implications:

Increased size of DNS responses due to larger addresses might be exploited
for DDos attacks

IPv6 Transition Co-Existence
Technologies

IPv6 Transition/Co-existence Technologies

IPv6 is not backwards-compatible with IPv4
Original transition plan: deploy IPv6 before we ran out of IPv4 addresses,
and eventually turn off IPv4 when no longer needed – it didn’t happen
Current transition/co-existence plan: based on a toolbox:

dual-stack
tunnels
translation

Transition Technologies
Dual Stack

Dual-stack

Each node supports both IPv4 and IPv6
Domain names include both A and AAAA (Quad A) records
IPv4 or IPv6 are used as needed
Dual-stack was the original transition co-existence plan, and still is the
recommended strategy for servers
Virtually all popular operating systems include native IPv6 support
enabled by default

Exploiting Native IPv6 Support

An attacker can connect to an IPv4-only network, and forge IPv6 Router
Advertisement messages. (*)
The IPv4-ony hosts would “become” dual-stack
IPv6 could be leveraged to evade network security controls (if the
network ignores IPv6)
Possible counter-measures:

Implemente Ipv6 security controls, even on IPv4-only networks.
Disable IPv6 support in nodes that are not expected to use IPv6

(*) http://resources.infosecinstitute.com/slaac-attack/

Transition Technologies
Tunnels

Tunnels

Use the existing IPv4 Internet to transport IPv6 packets from/to IPv6
islands
Tunnels can be:

configured: some sort of manual configuration is needed
automatic: the tunnel end-points are derived from the IPv6 addresses

Configured tunnels:
6in4
Tunnel broker

Automatic tunnels:
ISATAP
6to4
6rd
Teredo

6in4

The tunnel endpoints must be manually configured
Management can be tedious
Security may be used as needed (e.g., IPsec)
May operate across NATs (e.g. IPsec UDP encapsulation, or if the DMZ
function is employed)

Tunnel broker

The Tunnel Broker is model to aid the dynamic establishment of tunnels
(i.e., relieve the administrator from manual configuration)
The TB is used to manage the creation, modification or deletion of a
tunnel
Example: “Tunnel Broker with the Tunnel Setup Protocol (TSP)

Tunnel Broker: Sample Implementation

Gogoc is a tunnel broker implementation
It even allows “anonymous” tunnel establishment (no account needed)
Install it, and welcome to the IPv6 Internet!
Privacy concerns: Beware that all your traffic will most likely follow a
completely different path from your normal IPv4 traffic.

ISATAP

Intra-Site Automatic Tunnel and Addressing Protocol
Aims at enabling IPv6 deployment withing a site with no IPv6
infrastructure -- does not work across NATs

|0 1|1 3|3 6|
|0 5|6 1|2 3|
+----------------+----------------+--------------------------------+
|000000ug00000000|0101111011111110| IPv4 address |
+----------------+----------------+--------------------------------+

Interface-ID
format

Exploting ISATAP

Microsoft implementations “learn” the IPv4 address of the ISATAP router
by resolving the name “isatap” (via DNS and others)
An attacker could forge name resolution responses to:

Impersonate a legitimate ISATAP router
Enable IPv6 connectivity in an otherwise IPv4-only network

This could be used in conjunction with other attacks (e.g. forging DNS
responses such that they contain AAAA records)

6to4

Enables IPv6 deployment in sites with no global IPv6 connectivity - does
not work across NATs (unless the DMZ function is used)

| 16 | 32 | 16 | 64 bits |
+--------+-----------+--------+--------------------------------+
| 2002 | V4ADDR | Subnet | Interface ID |
+--------+-----------+--------+--------------------------------+

IPv6 Address
format

6to4 (II)

Packets originate at a 6to4 host as native IPv6 packets
A 6to4 router encapsulates the packet in IPv4, and sets the IPv4
Destination Address to that of a 6to4 relay (or the corresponding anycast
address 192.88.99.1)
The router decapsulates the IPv6 packet and forwards it to the IPv6
Internet
Packets destinated from a native IPv6 host to a 6to4 host are routed
towards a relay (i.e., peers advertising the 6to4 IPv6 prefix)
The relay encapsulates the packet into IPv4, and sends it to the 6to4
router
The 6to4 router decapsulates the IPv6 packets, and forwards it to the
“local” IPv6 network
Packets from 6to4 hosts to 6to4 hosts do not enter the IPv6 Internet (the
source 6to4 router sends the packet directly to the destination 6to4
router)

Problems with 6to4

Lots of poorly-managed 6to4 relays have been deployed
In most cases they introduce PMTUD black-holes (e.g. as a result of
ICMPv6 rate-limiting)
Lack of control of which 6to4 relays are used make troubleshooting
difficult

Use of the 6to4 anycast address makes it difficult to identify a poorly-
managed relay in the 6to4 -> native IPv6 direction
It is always difficult to troubleshoot problems in the native IPv6 -> 6to4
direction (the user has no control over which relay is used)

Privacy concerns:
6to4 traffic might take a completely different path than IPv4 traffic

6rd (IPv6 rapid deployment)

Aims at enabling IPv6 deployment in a site with no IPv6 infrastructure
Builds upon 6to4 – but the whole system is implemented within a site
No special prefix – uses global unicast range

| n bits | o bits | m bits | 128-n-o-m bits |
+---------------+--------------+-----------+------------------------+
| 6rd prefix | IPv4 address | subnet ID | interface ID |
+---------------+--------------+-----------+------------------------+
|<--- 6rd delegated prefix --->|

Address
format

Teredo

Aims at providing IPv6 connectivity to individual hosts behind one or
more NATs -- “last resort” mechanism for IPv6 connectivity
Suffers some of the same problems as 6to4

| 32 | 32 | 16 | 16 | 32 |
+-------------+-------------+-------+------+-------------+
| Teredo Pref | Server IPv4 | Flags | Port | Client IPv4 |
+-------------+-------------+-------+------+-------------+

Teredo
Address
format

Securiy Implications of Teredo

Teredo increases the host exposure to attack
Hosts behind a NAT may become reachable from the public Internet
Windows systems obtain the address of a Teredo serving by resolving
“teredo.ipv6.microsoft.com”
An attacker could impersonate a Teredo server if he can attack the DNS
Privacy concerns:

Teredo traffic might take a completely different path than IPv4 traffic

Translation

All of the previous transition/co-existence technologies require
assignment of both IPv4 and IPv6 addresses – what if there are no IPv4
addresses left?
A number of technologies are curerntly being developed in the IETF such
that:

IPv4 addresses can be dynamically shared by a large number of hosts, or,
IPv6-only nodes can still access IPv4-only nodes

Among these technlogies are:
CGN (Carrier-Grade NAT)
NAT 64
A+P

The future doesn’t look like very NAT-free…..

Security Implications of IPv6 on IPv4
Networks

Security Implications on IPv4 Networks
Transition Technologies

Exploiting Transition Technologies

Some systems (notably Windows) have support of trnasition technologies
enabled by default.
These technologies could be used to circumvent security controls.
Technologies such as Teredo could increase the attack expoure of hosts
Possible countermeasures:

Enforce IPv6 security controls on IPv4 networks.
Disable support of these technologies.
Deploy packet filtering policies, such that these technologies are blocked.

Filtering IPv6 Transition Technologies

Transition Technology Filtering rule

Dual-Stack Automatic (if network does not support IPv6)

IPv6-in-IPv4 tunnels IPv4 Protocol == 41

6to4 IPv4.Protocol == 41 &&
IPv4.{src,dst} == 192.88.99.0/24

ISATAP IPv4 Protocol == 41

Teredo IPv4.dst == known_teredo_servers &&
UDP.DstPort == 3544

TSP IPv4.dst == known_teredo_servers &&
{TCP,UDP}.dst == 3653

IPv6 Network Reconnaissance

Network Reconnaisance
Implications IPv6 addressing on scanning

Global Unicast Addresses

Syntax of the global unicast addresses:

The interface ID is typically 64-bis
Global Unicast Addresses can be generated with multiple different
criteria:

Use modified EUI-64 format identifierss (embed the MAC address)
“Privacy Addresses” (or some of their variants)
Manually-configured (e.g., 2001:db8::1)
As specified by some specific transition-co-existence technology

Global Routing Prefix Subnet ID Interface ID

| n bits | m bits | 128-n-m bits |

Implications on “brute-force scanning”

If we assume that host addresses are uniformly distributed over the
subnet address space (/64), IPv6 brute force scans would be virtually
impossible.
However, experiments (*) have shown that this is not necessarily the
case: address are usually follow some of the following patterns:

SLAAC (Interface-ID based on the MAC address)
IPv4-based (e.g., 2001:db8::192.168.10.1)
“Low byte” (e.g., 2001:db8::1, 2001:db8::2, etc.)
Privacy Addresses (Random Interface-IDs)
“Wordy” (e.g., 2001:db8::dead:beef)
Related to specific transition-co-existence technologies(e.g., Teredo)

(*) Malone, D. 2008. Observations of IPv6 Addresses. Passive and Active Measurement Conference (PAM 2008,
LNCS 4979), 29–30 April 2008.

Some real-world data….

[Malone, 2008] (*) measures ahow IPv6 addreses are assigned to hosts
and routers:

20%IPv4-based

Address Type Percentage

SLAAC 50%

Teredo 10%

Low-byte 8%

Privacy 6%

Wordy <1%

Other <1%

(*) Malone, D. 2008. Observations of IPv6 Addresses. Passive and Active Measurement Conference (PAM 2008,
LNCS 4979), 29–30 April 2008.

Address Type Percentage

Low-byte 70%

IPv4-based 5%

SLAAC 1%

Wordy

Privacy <1%

Teredo <1%

Other <1%

Hosts Routers

Some Advice

In general, a node does not need to be “publicly reachable” (e.g., servers),
privacy addresses are desirable
For servers, security-wise the policy of selection of IPv6 addresses is
irrelevant
For clients, in most scenarios the use of “privacy extensions” (or some
variant of it) is generally desirable:

Some OSes implement the privacy extensions specified in RFC 4941
Others generate the Interface-ID as a result of a hash-function over (Prefix,
MAC address, secret)

In any case, always consider whether it would be applicable to enforce a
packet filtering policy (i.e., if possible, do not rely on “security through
obscurity)

Network Reconnaisance
Possible approaches

Leveraging IPv6 features

ICMPv6 echo/request response
Traceroute6 (based on ICMPv6 errors)
ICMPv6 Node Information messages
IPv6 options of type 10xxxxxx
IPv6 multicast addresses
IPv6 anycast addresses
Special IPv4 addresses used for trasition technologies (e.g., Teredo)

Application-layer protocols

A number of applications may leak IPv6 addresses:
E-mail headers
P2P applications

Together with maling-list archives and popular search engines, they may
be an interesting vector for network reconnaisance

DNS

IPv6 addresses can be obtained by querying the DNS for AAAA records.
Many sites currently use domain names such as “ipv6*”
E.g., Google for “site:ipv6*” and “site:ip6*”

Network “Neighborhood” protocols

mDNS is being increasily used for discovering peers on the same
network.
Not IPv6-specific, but could be employed with IPv6, too.
Hosts announce themselves on the network, for ocassional networking.
This provides yet another vector for network reconnaissance.

Some thoughts on IPv6 security

Some thoughts...

While IPv6 provides similar features than IPv4, it uses different
mechanisms. – and the evil lies in the small details.
The security implications of IPv6 should be considered before it is
deployed (not after!).
Most systems have IPv6 support enabled by default, and this has
implications on “IPv4-only” networks!
Even if you are not planning to deploy IPv6 in the short term, most likely
you will eventually do it.
It is time to learn about and experiment with IPv6!

Questions?

Acknowledgments

Hack in Paris 2011 organizers

Fernando Gont
fernando@gont.com.ar
http://www.gont.com.ar

