
Some insights about the
recent TCP DoS (Denial of
Service) vulnerabilities

Fernando Gont
project carried out on behalf of

UK CPNI

HACK.LU 09 Conference
October 28-30, 2009. Luxembourg

About the speaker

For the last few years I have worked on security assessment of
communication protocols for the UK CPNI (Centre for the Protection of
National Infrastructure).
I’m also active at the IETF (Internet Engineering Task Force), where I have
authored a few RFCs and several Internet-drafts (I-Ds).
More information available at: http://www.gont.com.ar

Agenda

Overview of the project caried out on behalf of UK CPNI
Disclosure process of our results
The recent TCP DoS (Denial of Service) vulnerabilities
Disclosure process of the “Sockstress” vulnerabilities
Cooperation with vendors
Conclusions and Further work

Overview
(or “what we did, and why we did what we did”)

Problem Statement

Many vulnerabilities have been found in a number of implementations of
the TCP & IP protocols, and in the protocols themselves.
Documentation of these issues and of possible mitigations has been
spread among a number of vulnerability reports and a variety of online
documents.
Some of this documentation proposes counter-measures for these issues
without analyzing their interoperability implications on the protocols.
(See e.g., Silbersack’s presentation at BSDCan 2006).
The efforts of the security community never resulted in changes in the
corresponding IETF specifications, and sometimes not even in the
protocol implementations.
As a result,

New implementations of the protocols re-implement vulnerabilities found in
older implementations.
New protocols re-implement mechanisms or policies with “known” security
implications (e.g., Router Header Type 0 in IPv6 vs. IPv4 source routing).

Project Overview

During the last few years, CPNI – formerly NISCC – embarked itself in a
project to fill this gap.
The goal was to produce a set of documents that would serve as a
security roadmap for the TCP and IP protocols. The resulting document
are::

http://www.cpni.gov.uk/Docs/InternetProtocol.pdf
http://www.cpni.gov.uk/Docs/tn-03-09-security-assessment-TCP.pdf

This set of documents would be updated in response to the feedback
received from the comunity.
Finally, we planned to take the results of this project to the IETF, so that
the relevant specifications could be modified where needed. Both
documents have already been adopted by the IETF:

draft-ietf-opsec-ip-security
draft-ietf-tcpm-tcp-security

Disclosure process of our results
(“who got what, and when?”)

Results of our project

The IP security document was released in August 2008 (after review from
vendors, big carriers, etc.).
The resutls of our TCP security project were shared with vendors and
operators during 2007-2008 (and publicly released in February 2009).
We didn’t receive much feedback from vendors.
For the most part, we got feedback from colleagues (via “would you take
a look at this?”), some gubernamental organizations and some open
source projects.
By mid-2008 vendors didn’t seem to to be concerned about the contents
of our document.

But later in 2008...

The new (?) TCP DoS attacks
(“the sky is falling.... but we cannot tell you

why”)

Source: news.softpedia.com

The “new” TCP DoS attacks

Some (supposedly) new and killer vulnerabilities had been discovered by
researchers of Outpost24.
There were many claims about their impact… and they receive their
share of press.
The information provided by Outpost24 was really scarce, and some of it
simply didn’t make sense
What followed was: More press, some panic, speculation by the
comunity.
At some point, some vendors and CSIRTs that were aware about our
efforts on TCP & IP security came back to us (“What is this all about?”)
So we concentrated on the aforementioned issues, and developed and
provided specific advice to vendors. – it was the only advice that they
had.

Summary of the vulnerabilities

For the most part, the vulnerabilities are:
Connection-flooding attacks (naphta and FIN-WAIT-2 flooding attacks)
TCP send buffer attacks (Netkill and closed windows)
TCP receive buffer attacks

No countermeasures were proposed as part of the Outpost 24 report to
vendors and CSIRTs..
Outpost24 did find some pathological behavior of some stacks, e.g.,
when transiting through the FIN-WAIT-2 state, though.

Some insights on the recent TCP
DoS vulnerabilities

(our view of these issues)

Connection-flooding attacks
(Naphta and FIN-WAIT-2)

Connection-flooding attacks (Naphta)

The creation and maintenance of a TCP connection requires system
memory to maintain shared state between the local and the remote
TCPs.
Given that system memory is a limited resource, this can be exploited to
perform a DoS attack (this attack vector has been referred to as “Naphta”.
See CERT Advisory CA-2000-21).
In order to avoid wasting his own resources, an attacker can bypass the
kernel implementation of TCP, and simply craft the required packets to
establish a TCP connection with the remote endpoint, without tying his
own resources.
Outpost24 stated that in order to exploit the attack, they had to
introduce the concept of “client-side cookies”.

This is not needed: Simply fire the SYNs, and respond with an ACK all the
SYN/ACKS that you receive (KISS principle).

Mitigating Naphta

Key problem: an actual attack does not necessarily differ from a high-load
scenario
Possible counter-measures:

Enforce per-user and pre-process limits
Enforce limits on the number of ongoing connections from a single
system/prefix at the application-layer
Enforce limits on the number of ongoing connections from a single
system/prefix at a firewall

A typical connection-termination scenario:

Problems that may potentially arise due to the FIN-WAIT-2 state
There’s no limit on the amount of time a connection can stay in the FIN-
WAIT-2 state
At the point a TCP gets into the FIN-WAIT-2 state there’s no user-space
controlling process

FIN-WAIT-2 flooding attack

Countermeasures for FIN-WAIT-2
flooding

Enforce a limit on the duration of the FIN-WAIT-2 state. E.g., Linux 2.4
enforces a limit of 60 seconds. Once that limit is reached, the connection
is aborted.
The counter-measures for the Naptha attack still apply. However, the fact
that this attack aims at leaving lots of connections in the FIN-WAIT-2 state
will usually prevent an application from enforcing limits on the number
of ongoing connections.
Applications should be modified so that they retain control of the
connection for most states. This can be achieved with a conbination of
the shutdown(), setsockopt(), and close().
TCP should also enforce limits on the number of ongoing connections
with no controlling process.

TCP send buffer

TCP send buffer

The TCP send buffer keeps a copy of those data that have been accepted
by TCP for delivery to the remote TCP end-point.
It is possible to exploit the TCP send buffer for a memory exhaustion
attack:

Send an application request to the target system, but never acknowledge the
response (Netkill).
Send an application request, but close the receive window.

Netkill

TCP keeps in its retransmission buffer those data that have been sent but
not yet acknowledged.
TCP will retransmit those data until they either get acknowledged or the
connection times out. In the mean time, system memory is tied to those
data.
Easy to exploit for memory exhaustion: establish many TCP connctions,
send an applicattion-request on each of them, and never acknowledge
the received data.

Netkill (countermeasures)

Problem: it’s very hard to infer attack from the behavior of a single
connection.
Possible counter-measures:

Measure connection progress at the application-layer
Do not use an unnecessarily large socket send buffer
Enforce per-user and pre-process limits
Enforce limits on the number of ongoing connections from a single
system/prefix at the application-layer
Enforce limits on the number of ongoing connections from a single
system/prefix at a firewall

When dropping connection, these are possible parameters that may
provide hints for selecting the target connection:

Large amount of data queued in the TCP retransmission buffer
Only a small amount of data successfully transferred to the remote endpoint

Closed windows

The amount of data that are allowed for delivery to the remote TCP end-
point is governed by the TCP sliding-window mechanism.
The TCP window prevents a fast sender from overwhelming a slow
consumer application.
When the advertised window is zero, the window is said to be closed.
The TCP sender polls the receiver from time to time to find out if the
window has opened (persist timer).
However, there’s no limit on the amount of time that the window can be
closed.
Easy to exploit for memory exhaustion: just send an applicattion-request
to the remote end-point, and close the receive window.

Closed windows (countermeasures)

Problem: it’s very hard to infer attack from the behavior of a single
connection.
It has been proposed that TCP should impose a limit on the amount of
time that a window can be closed.
However, this counter-measure is trivial to circumvent: just open the
window a bit from time to time.
Possible counter-measures:

Measure connection progress at the application-layer
Do not use an unnecessarily large socket send buffer
Enforce per-user and pre-process limits
Enforce limits on the number of ongoing connections from a single
system/prefix at the application-layer
Enforce limits on the number of ongoing connections from a single
system/prefix at a firewall

TCP reassembly buffer

TCP reassembly buffer

When out-of-order data are received, a “hole” momentarily exists in the
data stream which must be filled before the received data can be
delivered to the application making use of TCP’s services.

This mechanism can be exploited in at least two ways:
Create lots of connections, and send a large amount of data on each of those
connections to the receiving TCP, leaving a hole in the data stream so that
those data cannot be delivered to the application.
Same as above, but send e.g., chunks of one byte of data, separated by holes
of e.g., one byte, targeting the overhead needed to hold and link each of
these chunks of data.

Countermeasures for the receive buffer

TCP implementations should enforce limits on the amount of out-of-
order data that are queued at any time.
TCP implementations should enforce limits on the maximum number of
“holes” that are allowed for each connection.
If necessary, out-of-order data could be discarded, with no effect on
interoperability. This has a performance penalty, though.

Cooperation with vendors
(too frequently, an oxymoron)

Oxymoron (NOUN): A rhetorical figure in which
incongruous or contradictory terms are combined.

What one would expect from vendors

You provide advice to them on possible security problems in their
product.
You delay publication of your work so that they have enough time to fix
their products before going public.
They fix their products before the isues become public

Good for the vendors
Good for their customers

They credit your work (possibly in their vulnerability asvisories).

Unfortunately, the process usually fails in this last step…

Case 1: Microsoft

Microsoft had received draft versions of our document during 2007-2008.
I personally delivered the document to key people at Microsoft.
However, when MS09-048 was released by Microsoft, there was no credit
to our work.
Microsoft’s response to my query was:

“As it was not reported directly here, we were never tracking you paper as a
part of this case. We also did not credit any other ICASI members or CERT-FI
who were also providing guidance for mitigation and workarounds to enable
users to protect themselves.”, and…

“As your documents discuss the TCP/IP protocol and did not discuss any
specific issues with Microsoft products, there is nothing actionable for us to
triage or investigate.”

Case 2: Cisco Systems

Cisco had received draft versions of our document during 2007-2008.
I personally delivered the document to key people at Microsoft.
However, when cisco-sa-20090908-tcp24 was released by Microsoft,
there was no credit to our work.
Cisco’s response to my query was:

“Thank-you for contacting Cisco about your concerns in the recent TCP
Security Advisory, cisco-sa-20090908-tcp24. Yes, we reviewed your research
paper in the August 2008 timeframe and at that time had no concerns about
the publication. Our advisory was in direct response to what was being
coordinated by CERT-FI across industry and the existence of the proof-of-
concept tool delivered to us by Outpost24“

Conclusions

Conclusions and Further Work

Working on TCP/IPv4 security in 2005-2008 probably didn’t have much
glamour. However, this was something that needed to be done.
Some security issues had not previously been discussed. In some other
cases, the vulnerabilities were known, but there had never been a
discussion about possible countermeasures.
Still in 2009, there’s lots of work to do to improve the available TCP
implementations.
We’re aware of some efforts in the vendor community to improve the
security/resiliency of TCP. Not sure what the end result will be.
There are efforts in the IETF to update the specifications where necessary.
However, there’s also some resistance by some participants to update/fix
the specs (talk about politics). – Get involved!
Your feedback really matters.

Questions?

Acknowledgements

UK CPNI, for their continued support
HACK.LU organizers, and Fred in particuar, for their support in this
conference.

Fernando Gont
fernando@gont.com.ar

http://www.gont.com.ar

Thank you!

