
Copyright notice

This slideware is © 2011 by SI6 Networks

Permission to use this slideware is granted only for personal use

Permission to distribute this slideware is granted only without any
modifications to the slides set

For any other uses, please contact:
info@si6networks.com

www.si6networks.com

mailto:info@si6networks.com
http://www.si6networks.com/

Contents

This slideware contains part of the materials used for the training
“Hacking IPv6 Networks”

taught during the DEEPSEC 2011 Conference.

More inforamation available at:
www.hackingipv6networks.com

www.si6networks.com

http://www.hackingipv6networks.com/
http://www.si6networks.com/

Hacking IPv6 Networks

Fernando Gont

DEEPSEC 2011
Vienna, Austria. November 15-16, 2011

About

 I have worked in security assessment of communication protocols
for:

 UK NISCC (National Infrastructure Security Co-ordination Centre)
 UK CPNI (Centre for the Protection of National Infrastructure)

 Currently working for SI6 Networks (http://www.si6networks.com)
 Member of R+D group CEDI at UTN/FRH
 Involved in the Internet Engineering Task Force (IETF)
 More information at: http://www.gont.com.ar

http://www.gont.com.ar/

Agenda (I)

 Objectives of this training
 Motivation for IPv6, and current state of affairs
 Brief comparision between IPv6 and IPv4
 IPv6 Addressing Architecture
 IPv6 Header Fields
 IPv6 Extension Headers
 IPv6 Options
 Internet Control Message Protocol version 6 (ICMPv6)
 Neighbor Discovery for IPv6
 IPv6 Address Resolution
 Stateless Address Auto-configuration (SLAAC)

Agenda (II)

 IPsec
 Multicast Listener Discovery
 Dynamic Host Configuration Protocol version 6 (DHCPv6)
 DNS support for IPv6
 IPv6 firewalls
 Transition/co-existence technologies (6to4, Teredo, ISATAP, etc.)
 Network reconnaissance in IPv6
 Security Implications of IPv6 on IPv4-only networks
 IPv6 deployment considerations
 Key areas in which further work is needed
 Some conclusions

Brief introduction to IPv6

So... what is this “IPv6” thing about?

 IPv6 was developed to address the exhaustion of IPv4 addresses
 IPv6 has not yet seen broad/global deployment (current estimations

are that IPv6 traffic is less than 1% of total traffic)
 However, general-purpose OSes have shipped with IPv6 support for

a long time – hence part of your network is already running IPv6!
 Additionaly, ISPs and other organizations have started to take IPv6

more seriosly, partly as a result of:
– Exhaustion of the IANA IPv4 free pool
– Awareness activities such as the “World IPv6 Day”
– Imminent exhaustion of the free pool of IPv4 addresses at the

different RIRs
 It looks like IPv6 is finally starting to take off...

Motivation for this training

 A lot of myths have been created around IPv6 security:
– Security as a key component of the protocol
– Change from network-centric to host-centric paradigm
– Increased use of IPsec
– etc.

 They hace lead to a general misunderstanding of the security
properties of IPv6, thus negatively affecting the emerging (or
existing) IPv6 networks.

 This training separates fudge from fact, and offers a more realistic
view of “IPv6 security”

– At a conceptual level, it is meant to influence the way in which you
think about IPv6 security (and IPv6 in general)

– We will also reproduce some attacks and play with configuration
information, to keep it real (“walk the talk”)

Some general considerations about
IPv6 security

Some interesting aspects about IPv6

 We have much less experience with IPv6 than with IPv4
 IPv6 implementations are much less mature than their IPv4

counterparts.
 Security products (firewalls, NIDS, etc.) have less support for IPv6

than for IPv4
 The complexity of the resulting network will greatly increase during

the transition/co-existence period:
 Two internetworking protocols (IPv4 and IPv6)
 Increased use of NATs
 Increased use of tunnels
 Use of a plethora of transition/co-existence mechanisms

 Lack of trained human resources

…and even then, IPv6 will be in many cases the only option on the table
to remain in this business

Brief comparision between
IPv6 and IPv4

Brief comparision between IPv6 and IPv4

 IPv6 and IPv4 are very similar in terms of functionality (but not in terms of
mechanisms)

IPv4 IPv6
Addressing 32 bits 128 bits

Address
Resolution

ARP ICMPv6 NS/NA (+ MLD)

Auto-
configuration

DHCP & ICMP RS/RA ICMPv6 RS/RA & DHCPv6
(recommended) (+ MLD)

Fault Isolation ICMP ICMPv6

IPsec support Optional Recommended (not
mandatory)

Fragmentation Both in hosts and
routers

Only in hosts

Brief comparision of IPv4 and IPv6 (II)

 Header formats:

IPv6 header fields
Basic header fields

IPv6 header

 Fixed-length (40-bytes) header

Version

 Identifies the Internet Protocol version number (“6” for IPv6)
 It should match the “Protocol” specified by the underlying link-layer

protocol
 If not, link-layer access controls could be bypassed

 All implementations tested so far properly validate this field
– Must admit I've learned it the hard way :-)

Traffic Class

 Same as IPv4’s “Differentiated Services”
 No additional “Quality of Service” (QoS) feature in IPv6 (sorry)
 “Traffic Class” could be leveraged to receive differentiated service
 The Traffic Class should be policed at the network edge
 In summary, no differences with respect to IPv4 QoS

Flow Label

 Finding the transport-protocol port-numbers con probe to be difficult
in IPv6

 The Flow Label is thus meant help with load sharing
 The three-tuple {Source Address, Destination Address, Flow Label}

identifies a communication flow
 Currently unused by many stacks

 Some stacks simply set it to 0 for all packets
 Other stacks set it improperly

 Specification of this header field has just been published:
 Potential vulnerabilities depend on predictable Flow:

 Might be leveraged to perform “dumb” (stealth) address scans
 Might be leveraged to perform Denial of Service attacks

Payload Length

 Specifies the length of the IPv6 payload (not of the entire packet)
 Maximum IPv6 packet is 65855 bytes. However, IPv6

“Jumbograms” can be specified.
 A number of sanity checks need to be performed. e.g.:

 The IPv6 Payload Length cannot be larger than the “payload size”
reported by the link-layer protocol

 All stacks seem to properly validate this field

Next Header

 Identifies the header/protocol type following this header.
 IPv6 options are included in “extension headers”

 These headers sit between the IPv6 header and the upper-layer
protocol

 There may be multiple instances of multiple extension headers
 Hence, IPv6 follow a “header chain” type structure. e.g.,

I P v 6
H e a d e r

I P v 6
H e a d e r D e s t i n a t i o n O p t i o n s

H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

N H = 6 0 N H = 6 0

D e s t . O p t i o n s
H e a d e r

D e s t . O p t i o n s
H e a d e r T C P S e g m e n t

T C P S e g m e n t

N H = 0 6N H = 6 0

Hop Limit

 Analogous to IPv4’s “Time to Live” (TTL)
 Identifies the number of network links that a packet may traverse
 Packets are discarded when the Hop Limit is decremented to 0.
 Different OSes use different defaults for the “Hop Limit” (typically a

power of two: 64, 128, etc.)
 Could (in theory) be leveraged for:

 Detecting the Operating System of a remote node
 Fingerprinting a remote physical device
 Locating a node in the network topology
 Evading Network Intrusion Detection Systems (NIDS)
 Reducing the attack exposure of some hosts/applications

Hop Limit: Fingerprinting the remote OS
Devices
 There are a few default values for the Hop Limit in different OSes
 Based on the received Hop Limit, the original Hop Limit can be

inferred
 Example:

 We receive packets with a Hop Limit of 60
 We can infer the original Hop Limit was 64
 We can determine a set of possible remote OSes

 Note: mostly useless, since:
 There is only a reduced number of default “Hop Limit” values
 Fingerprinting graularity is too coarse

Hop Limit: Fingerprinting Physical
Devices
 If packets originating from the same IPv6 addresses contain very

different “Hop Limits”, they might be originated by different devices.
 Example:

 We see this traffic:
 Packets from FTP server 2001:db8::1 arrive with a “Hop Limit” of 60
 Packets from web server 2001:db8:::2 arrive with a “Hop Limit” of 124

 We infer:
 FTP server sets the Hop Limit to 64, and is 4 “routers” away
 Web server sets the Hop Limit to 128, and is 4 “routers” away

 Note: mostly useless, since:
 It requires different OSes or different locations behind the “middle-box”
 There is only a reduced number of default “Hop Limit” values

Hop Limit: Locating a Node

 Basic idea: if we are receiving packets from a node and assume that it is
using the default “Hop Limit”, we can infer the orginal “Hop Limit”

 If we have multple “sensors”, we can “triangulate” the position of the node

F is the only node that is:
• 3 “routers” from A
• 3 “routers” from B
• 3 “routers” from C
• 2 “routers” from D

Source Hop Limit

A 61

B 61

C 61

D 62

Hop Limit: Evading NIDS

 Basic idea: the attacker sets the Hop Limit to a value such that the
NIDS sensor receives the packet, but the target host does not.

 Counter-measure: Normalize the “Hop Limit” at the network edge (to
64) or block incomming packets with very small “Hop Limits” (e.g.,
smaller than 10)

Hop Limit: Improving Security (GTSM)

 GTSM: Generalized TTL Security Mechanism
 Named after the IPv4 “TTL” field, but same concept applies to IPv6
 It reduces the host/application exposure to attacks

 The Hop Limit is set to 255 by the source host
 The receiving host requires the Hop Limit of incoming packets to be of a

minimum value (255 for link-local applications)
 Packets that do not pass this check are silently dropped

 This mechanism is employed by e.g., BGP and IPv6 Neighbor
Discovery

 Example:

12:12:42.086657 2004::20c:29ff:fe49:ebdd > ff02::1:ff00:1: icmp6: neighbor sol: who has
2004::1(src lladdr: 00:0c:29:49:eb:dd) (len 32, hlim 255)
12:12:42.087654 2004::1 > 2004::20c:29ff:fe49:ebdd: icmp6: neighbor adv: tgt is
2004::1(RSO)(tgt lladdr: 00:0c:29:c0:97:ae) (len 32, hlim 255)

IPv6 Addressing Architecture

Brief Overview

 The main driver for IPv6 is its increased address space
 IPv6 uses 128-bit address (vs. IPv4's 32-bit addresses)
 Similarly to IPv4,

 Addresses are aggregated into “prefixes” (for routing purposes)
 There are different address types (unicast, anycast, and multicast)
 There are different address scopes (link-local, global, etc.)

 However, at any given time, several IPv6 addresses, of multiple
types and scopes are used. For example,
 One or more unicast link-local address
 One or more global unicast address
 One or more link-local address

IPv6 Address Types

 The address type can be identified as follows:

Address Type IPv6 prefix

Unspecified ::/128

Loopback ::1/128

Multicast FF00::/8

Link-local unicast FE80::/10

Unique Local Unicast FC00::/7

Global Unicast (everything else)

IPv6 Address Types
Unicast Addresses

Unicast Addresses

 Global unicast
 Meant for communication on the public Internet

 Link-local unicast
 Meant for communication within a network link/segment

 Site-local unicast
 Deprecated (were meant to be valid only within a site)

 Unique Local unicast
 Are expected to be globally unique, but not routable on the public

Internet

Global Unicast Addresses

 Syntax of the global unicast addresses:

 The interface ID is typically 64-bis
 The Interface-ID can be selected with different criteria:

 Use modified EUI-64 format identifiers (embed the MAC address)
 “Privacy Addresses” (or some of their variants)
 Manually-configured (e.g., 2001:db8::1)
 As specified by some specific transition-co-existence technology

Global Routing Prefix Subnet ID Interface ID

 | n bits | m bits | 128-n-m bits |

Link-local Unicast Addresses

 Syntax of the link-local unicast addresses:

 The Link-Local Unicast Prefix is fe80::/64
 The interface ID is typically set to the modified EUI-64 format

identifiers (embed the MAC address)

Link Local Unicast Prefix Interface ID

 | 64 bits | 64 bits |

Unique-local Unicast Addresses

 Syntax of the unique-local unicast addresses:

 The interface ID is typically 64-bis
 The Interface-ID can be selected with different criteria:

 Use modified EUI-64 format identifiers (embed the MAC address)
 “Privacy Addresses” (or some of their variants)
 Manually-configured (e.g., fc00::1, fc00::2, etc.)
 As specified by some specific transition-co-existence technology

ULA Prefix Subnet ID Interface ID

 | n bits | m bits | 128-n-m bits |

Modified EUI-64 Identifiers

 They are constructed from e.g. Ethernet addresses.
 The word “fffe” is inserted between the OUI and the rest of the

Ethernet
 They are constructed from e.g. Ethernet addresses:

 The “universal” (bit 6, left to right) is set to 1
 The word 0xfeff is inserted between the OUI and the rest of the address

Example:
 Ethernet address: 00:1b:38:83:d8:3c
 We set bit 6 to 1, and get: 02:1b:38:83:d8:3c
 We insert the word 0xfffe and get: 021b 38ff fe83 d83c
 This would lead to e.g. the IPv6 address: fe80::21b:38ff:fe83:d83c

IPv6 Address Types
Multicast Addresses

Multicast Addresses

 Identify a set of nodes
 Can be of different scopes (interface local, link-local, global, etc.)
 Some examples:

Multicast address Use

FF01:0:0:0:0:0:0:1 All nodes (interface-local)

FF01:0:0:0:0:0:0:2 All routers (interface-local)

FF02:0:0:0:0:0:0:1 All nodes (link-local)

FF02:0:0:0:0:0:0:2 All routers (link-local)

FF05:0:0:0:0:0:0:2 All routers (site-local)

FF02:0:0:0:0:1:FF00::/104 Solicited-Node

Solicited-node multicast addresses

 Used for address resolution (Neighbor Discovery)
 They avoid the use of broadcasts, which degrade network

performance
 They are constructed from the prefix ff02:0:0:0:0:1:ff00::/104
 The least-significant 24 bits are copied from the original address
 Example:

 We have the IPv6 address fc00::1::21b:38ff:fe83:d83c
 The resulting solicited-node multicast address is: ff02::1:ff83:d83c

Mapping IPv6 multicast to Ethernet

 The mapping of IPv6 multicast addresses to Ethernet addresses is
straightforward (no protocol is needed)

 The first two bytes of the Ethernet address are set to “33:33”
 The address is completed with the four least-significant bytes of the

IPv6 address
 Example:

 We have the IPv6 multicast address ff02::1:ff83:d83c
 The resulting multicast Ethernet address is: 33:33:ff:83:d8:3c

IPv6 Address Types
Anycast Addresses

Anycast Addresses

 Identify a node belonging to a set of nodes (e.g., some DNS server,
some DHCP server, etc.)

 Packets sent to an anycast address are sent only to one of those nodes
(the nearest one, as from the point of view of the routing protocols).

 Only a few anycast addresses have been specified:
 Subnet-router

IPv6 Addressing
Implications on End-to-End Conectivity

Brief overview

 The IPv4 Internet was based on the so-called “End to End” principle:
 Dumb network, smart hosts
 Any node can establish a communication instance with any other node

in the network
 The network does not care about what is inside internet-layer packets

 It is usually argued that the “end-to-end principle” allows for
“innovation”

 Deployment of some devices (mostly NATs) have basically
elimintated the “end-to-end” property of the Internet

 With the increased IPv6 address space, it is expected that each
device will have a globally-unique address, and NATs will be no
longer needed.

Some considerations

Myth: “IPv6 will return the End-to-End principle to the Internet”

 It is assumed that the possibility of glbal-addresses for every host
will return the “End-to-End” principle to the Internet.

 However,
 Global-addressability does not necessarily imply “end-to-end”

connectivity.
 Most production networks don’t really care about innovation, but rather

about getting work done.
 Users expect to use in IPv6 the same services currently available for

IPv4 without “end-to-end” connectivity (web, email, social networks, etc.)
 Thus,

 End-to-end connectivity is not necessarily a desired property in a
production network (e.g., may increase host exposure unnecessarily)

 A typical IPv6 subnet will be protected by a stateful firewall that only
allows “return traffic”

IPv6 Addressing
Implications on Network Reconnaissance

Implications on “brute-force scanning”

 If we assume that host addresses are uniformly distributed over the
subnet address space (/64), IPv6 brute force scans would be
virtually impossible.

 However, experiments (*) have shown that this is not necessarily
the case

 IPv6 addresses are usually follow some of the following patterns:
 SLAAC (Interface-ID based on the MAC address)
 IPv4-based (e.g., 2001:db8::192.168.10.1)
 “Low byte” (e.g., 2001:db8::1, 2001:db8::2, etc.)
 Privacy Addresses (Random Interface-IDs)
 “Wordy” (e.g., 2001:db8::dead:beef)
 Related to specific transition-co-existence technologies(e.g., Teredo)

(*) Malone, D. 2008. Observations of IPv6 Addresses. Passive and Active Measurement Conference (PAM 2008,
LNCS 4979), 29–30 April 2008.

Some real-world data….

 [Malone, 2008] (*) measures how IPv6 addreses are assigned to
hosts and routers:

Address Type Percentage

SLAAC 50%

IPv4-based 20%

Teredo 10%

Low-byte 8%

Privacy 6%

Wordy <1%

Other <1%

(*) Malone, D. 2008. Observations of IPv6 Addresses. Passive and Active Measurement Conference (PAM 2008,
LNCS 4979), 29–30 April 2008.

Address Type Percentage

Low-byte 70%

IPv4-based 5%

SLAAC 1%

Wordy <1%

Privacy <1%

Teredo <1%

Other <1%

Hosts Routers

What about virtualization? (bonus track)

 Virtual machines get virtual network interfaces
 VirtualBox selects MAC addresses from the following OUI:

– 08:00:27
 Automatically-generated addresses in VMWare ESX Server:

– Use the OUI: 00:05:69
– Two bytes of the addresses are taken from the IPv4 address of the

host
– Least significant byte taken from a hash of the VM's configuration

file name

 Manually-generated addresses in VMWare ESX Server:
 Use the OUI: 00:50:56

Some Conclusions and Advice

 IPv6 addresses can be very predictable
 In general, a node does not need to be “publicly reachable” (e.g.,

servers), unpredictable addresses are desirable
 For servers, security-wise the policy of selection of IPv6 addresses

is irrelevant
 For clients, in most scenarios the use of “privacy extensions” (or

some variant of it) is generally desirable
 In any case, always consider whether it would be applicable to

enforce a packet filtering policy (i.e., if possible, do not rely on
“security through obscurity)

Network reconnaissance with multicast

 Multicast addresses can be leveraged for reconnaissance
 Unfortunately (or not) these addresses can only be used locally
 Example with the all-nodes link-local multicast address:

 ping6 ff02::1%eth0
 Example with the all-routers link-local multicast address:

 ping6 ff02::2%em0

IPv6 Extension Headers

IPv6 Extension Headers

 IPv6 has a fixed header – any options must be included in
“extension headers”

 So far, the following Extension Headers have been standardized:
 Hop-byHop Options
 Routing
 Fragment
 Encapsulating Security Payload (ESP)
 Authentication
 Destination Options

 By separating the options into different header, each node
processes only the options meant for them (e.g. hosts vs. routers)

IPv6 Extension Headers
Fragment Header

Fragmentation Header

 The fixed IPv6 header does not include support for
fragmentation/reassembly

 If needed, such support is added by an Extension Header
(Fragmentation Header, NH=44)

 | 8 bits | 8 bits | 13 bits | 2b |1b|

 Fragment Offset: offset of the data following this header, relative to the start of
the fragmentable part of the original packet

 M: “More Fragments” bit, as in the IPv4 header
 Identification: together with the Source Address and Destination Address

identifies fragments that correspond to the same packet

 Next Header Reserved Fragment Offset Res M

Identification

Fragmentation Example (legitimate)

 ping6 output

% ping6 –s 1800 2004::1

PING 2004::1(2004::1) 1800 data bytes

1808 bytes from 2004::1: icmp_seq=1 ttl=64 time=0.973 ms

--- 2004::1 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.973/0.973/0.973/0.000 ms

 tcpdump output

20:35:27.232273 IP6 2004::5e26:aff:fe33:7063 > 2004::1: frag (0|1448)
ICMP6, echo request, seq 1, length 1448

20:35:27.232314 IP6 2004::5e26:aff:fe33:7063 > 2004::1: frag (1448|360)

20:35:27.233133 IP6 2004::1 > 2004::5e26:aff:fe33:7063: frag (0|1232)
ICMP6, echo reply, seq 1, length 1232

20:35:27.233187 IP6 2004::1 > 2004::5e26:aff:fe33:7063: frag (1232|576)

Security Implications

 Some are the same as for IPv4 fragmentation:
 Stateful operation for a stateless protocol: risk of exhausting kernel

memory if the fragment reassembly buffer is not flushed properly

Predictable Identification values (CVE-2011-2699) allow for:
 “stealth” port scanning technique
 DoS attacks (IPv6 ID collisions)

 Others are different:
 The Identification field is much larger: chances of “IP ID collisions” are

reduced
 Note: Overlapping fragments have been recently forbidden (RFC 5722)

– but they are still allowed by many OSes

Fragment Header
IPv6 idle scan

Example of Predictable Identification
values
 tcpdump output (% ping6 –s 1800 2004::1)

1. IP6 (hlim 64, next-header Fragment (44) payload length: 1456)
 2004::5e26:aff:fe33:7063 > 2004::1: frag (0x0000007a:0|1448) ICMP6, echo
 request, length 1448, seq 1
2. IP6 (hlim 64, next-header Fragment (44) payload length: 368)
 2004::5e26:aff:fe33:7063 > 2004::1: frag (0x0000007a:1448|360)
3. IP6 (hlim 64, next-header Fragment (44) payload length: 1240) 2004::1 >
 2004::5e26:aff:fe33:7063: frag (0x4973fb3d:0|1232) ICMP6, echo reply,
 length 1232, seq 1
4. IP6 (hlim 64, next-header Fragment (44) payload length: 584) 2004::1 >
 2004::5e26:aff:fe33:7063: frag (0x4973fb3d:1232|576)
5. IP6 (hlim 64, next-header Fragment (44) payload length: 1456)
 2004::5e26:aff:fe33:7063 > 2004::1: frag (0x0000007b:0|1448) ICMP6, echo
 request, length 1448, seq 2
6. IP6 (hlim 64, next-header Fragment (44) payload length: 368)
 2004::5e26:aff:fe33:7063 > 2004::1: frag (0x0000007b:1448|360)
7. IP6 (hlim 64, next-header Fragment (44) payload length: 1240) 2004::1 >
 2004::5e26:aff:fe33:7063: frag (0x2b4d7741:0|1232) ICMP6, echo reply,
 length 1232, seq 2
8. IP6 (hlim 64, next-header Fragment (44) payload length: 584) 2004::1 >
 2004::5e26:aff:fe33:7063: frag (0x2b4d7741:1232|576)

Revision TCP Connection-Establishment

 Connection-established Connection-rejected

Forged TCP Connection-Establishment

 Open port Closed port

IPv6 Idle Scan

 Open port Closed port

IPv6 Idle Scan

 This “dumb scan” technique allows for a very stealthy port scan
 It only requires an “inactive” host to be used as “zombie”
 Clearly, we didn’t learn the lesson from IPv4

sysctl’s for frag/reassembly

 net.inet6.ip6.maxfragpackets: maximum number of fragmented
packets the node will accept (defaults to 200 in OpenBSD and 2160
in FreeBSD)
 0: the node does not accept fragmented traffic
 -1: there’s no limit on the number of fragmented packets

 net.inet6.ip6.maxfrags: maximum number of fragments the
node will accept (defaults to 200 in OpenBSD and 2160 in
FreeBSD)
 0: the node will not accept any fragments
 -1: there is no limit on the number of fragments

IPv6 Extension Headers
Hop-by-Hop Options

Hop-by-Hop Options Header

 Identified by a Next Header of 0.
 Carries options meant for routers

– So far, only “Router Alert” option has been specified
 This header may lead to a DoS at the intervening routers
 Should be policed at the network edge

 | 8 bits | 8 bits |

 Next Header Length Options

IPv6 Extension Headers
Destination Options

Destination options Header

 Identified by a Next Header of 60.
 Carries options meant for the destination nodes

– Only some experimental options have been specified
 Should probably be policed at the network edge

 | 8 bits | 8 bits |

 Next Header Length Options

IPv6 Extension Headers
Routing Header

Routing Header

 Identified by a Next Header of 43
 Meant to lists nodes that must be visited on the way to the packet's

destination

 | 8 bits | 8 bits | 8 bits | 8 bits |

 Next Header Length Routing Type Segments Left

Type-specific data

Routing Type 0

 IPv6 version of IPv4 Source Routing
 Can be far more damaging (many more addresses can be specified)
 Deprecated for current implementations

IPv6 Extension Headers
Implications on Firewalls

Brief Overview of the IPv4 Situation

 IPv4 has a variable-length (20-60 bytes) header, and a minimum
MTU of 68 bytes.

Brief Overview of the IPv4 Situation

 IPv4 has a variable-length (20-60 bytes) header, and a minimum
MTU of 68 bytes. The following information can be assumed to be
present on every packet:

Brief Overview of the IPv6 Situation

 The variable length-header has been replaced by a fixed-length (40
bytes) header

 Any IPv6 options are included in “extension headers” that form a
“header chain”

 For example,

I P v 6
H e a d e r

I P v 6
H e a d e r D e s t . O p t i o n s

H e a d e r

D e s t . O p t i o n s
H e a d e r T C P S e g m e n t

T C P S e g m e n t

N H = 6 0 N H = 0 6

Problem Statement

 The specifications allow for the use of multiple extension headers,
even of the same type – and implementations support this.

 Thus, the structure of the resulting packet becomes increasingly
complex, and packet filtering becomes virtually impossible.

 For example:

I P v 6
H e a d e r

I P v 6
H e a d e r D e s t i n a t i o n O p t i o n s

H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

N H = 6 0 N H = 6 0

D e s t . O p t i o n s
H e a d e r

D e s t . O p t i o n s
H e a d e r T C P S e g m e n t

T C P S e g m e n t

N H = 0 6N H = 6 0

Problem Statement (II)

 Example of Destination Options and Fragmentation:

I P v 6
H e a d e r

I P v 6
H e a d e r D e s t i n a t i o n O p t i o n s

H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

N H = 6 0 N H = 0 6

T C P S e g m e n t
T C P S e g m e n t

I P v 6
H e a d e r

I P v 6
H e a d e r

N H = 4 4

F r a g m e n t
H e a d e r

F r a g m e n t
H e a d e r

N H = 6 0

D e s t i n a t i o n O p t i o n s
H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

N H = 0 6

I P v 6
H e a d e r

I P v 6
H e a d e r

N H = 4 4

F r a g m e n t
H e a d e r

F r a g m e n t
H e a d e r D e s t . O p t .

H e a d e r

D e s t . O p t .
H e a d e r T C P S e g m e n t

T C P S e g m e n t

N H = 6 0

Original
Packet

First
Fragment

Second
Fragment

Problem Statement (III)

 Two Destination Options headers, and a Fragment Header:

Original
Packet

First
Fragment

Second
Fragment

I P v 6
H e a d e r

I P v 6
H e a d e r D e s t i n a t i o n O p t i o n s

H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

N H = 6 0 N H = 6 0

D e s t . O p t i o n s
H e a d e r

D e s t . O p t i o n s
H e a d e r T C P S e g m e n t

T C P S e g m e n t

N H = 0 6N H = 6 0

I P v 6
H e a d e r

I P v 6
H e a d e r F r a g m e n t

H e a d e r

F r a g m e n t
H e a d e r

N H = 4 4 N H = 6 0

D e s t . O p t i o n s
H e a d e r

D e s t . O p t i o n s
H e a d e r

N H = 6 0

I P v 6
H e a d e r

I P v 6
H e a d e r F r a g m e n t

H e a d e r

F r a g m e n t
H e a d e r

N H = 4 4 N H = 6 0

D . O p t .
H d r .

D . O p t .
H d r . D e s t . O p t i o n s

H e a d e r

D e s t . O p t i o n s
H e a d e r T C P S e g m e n t

T C P S e g m e n t

N H = 0 6

Possible Countermeasures

 Use a stateful firewall that reassembles the fragments, and then
applies the packet filtering rules

 Filter (in firewalls and/or hosts) packets with specific combinations
of extension headers:
 Packets with multiple extension headers (e.g., more than 5)
 Packets that combine fragmentation and other extension headers
 Packets which are fragmented and do not contain the upper-layer

header in the first fragment.
 If filtering is to be performed in layer-2 devices (e.g., RA-Guard), the

possible counter-measures are reduced
 e.g., it's not possible to do fragment reasembly at layer-2!

Some Conclusions

 With the current state of affairs, it ay be easy to circumvent IPv6
firewalls.

 We expect firewalls will block (at the very least) packets with
specific combinations of extension headers.

 The result will be: less flexibility, possibly preventing any use of IPv6
exntesion headers

Internet Control Message Protocol
version 6 (ICMPv6)

Internet Control Message Protocol
version 6
 ICMP is a core protocol of the IPv6 suite, and is used for:
 Fault isolation (ICMPv6 errors)

 Troubleshooting (ICMPv6 echo request/response)
 Address Resolution
 Stateless address autoconfiguration

 ICMPv6 is mandatory for IPv6 operation

ICMPv6
Error Messages

Fault Isolation (ICMPv6 error messages)

 A number of ICMPv6 error messages are specified in RFC 4443:
 Destination Unreachable

 No route to destination
 Beyond scope of source address
 Port Unreachable, etc.

 Packet Too Big
 Time Exceeded

 Hop Limit Exceeded in Transit
 Fragment reassembly time exceeded

 Parameter Problem
 Erroneous header field encountered
 Unrecognized Nect Header type encountered
 Unrecognized IPv6 option encountered

 ICMP Redirect
 Clearly, most of them parallel their ICMP counter-parts

Hop Limit Exceeded in Transit

 Are generated when the Hop Limit of a packet is decremented to 0.
 Typically leveraged by traceroute tool
 Example:

% traceroute 2004:1::30c:29ff:feaf:1958
traceroute to 2004:1::30c:29ff:feaf:1958 (2004:1::30c:29ff:feaf:1958) from
2004::5e26:aff:fe33:7063, port 33434, from port 60132, 30 hops max, 60 byte
packets
 1 2004::1 0.558 ms 0.439 ms 0.500 ms
 2 2004::1 2994.875 ms !H 3000.375 ms !H 2997.784 ms !H

Hop Limit Exceeded in Transit (II)

 Tcpdump trace:

1. IP6 (hlim 1, next-header UDP (17) payload length: 20)
2004::5e26:aff:fe33:7063.60132 > 2004:1::30c:29ff:feaf:1958.33435:
[udp sum ok] UDP, length 12

2. IP6 (hlim 64, next-header ICMPv6 (58) payload length: 68) 2004::1 >
2004::5e26:aff:fe33:7063: [icmp6 sum ok] ICMP6, time exceeded in-
transit, length 68 for 2004:1::30c:29ff:feaf:1958

3. IP6 (hlim 2, next-header UDP (17) payload length: 20)
2004::5e26:aff:fe33:7063.60132 > 2004:1::30c:29ff:feaf:1958.33436:
[udp sum ok] UDP, length 12

4. IP6 (hlim 64, next-header ICMPv6 (58) payload length: 68) 2004::1 >
2004::5e26:aff:fe33:7063: [icmp6 sum ok] ICMP6, destination
unreachable, length 68, unreachable address
2004:1::30c:29ff:feaf:1958

Hop Limit Exceeded in Transit (III)

 Use of traceroute6 for network reconnaissance could be mitigated
by:
 filtering outgoing “Hop Limit Exceeded in transit” at the network

perimeter, or,
 by normalizing the “Hop Limit” of incoming packets at the network

perimeter
 Note: NEVER normalize the “Hop Limit” to 255 (or other large value)

–use “64” instead

ICMPv6 Connection-Reset Attacks

 Some ICMPv6 messages are assumed to indicate “hard errors”
 Some stacks used to abort TCP connections when hard errors were

received
 No stacks were found vulnerable to these attacks
 We learned the lesson from IPv4 – good!

ICMPv6 PMTUD Attacks

 ICMPv6 PTB messages are used for Path-MTU discovery
 The security implications of these messages are well-known

(remember “ICMP attacks against TCP” back in 2004?)
 The mitigations are straightforward:

 Validate the received ICMPv6 messages (TCP SEQ #, etc.)
 Many implementations fail to properly validate ICMPv6 messages

 The Path-MTU is never reduced to less than 1280 bytes
 But a Fragment Header will be included in all further packets

 This can be leveraged for exploiting fragmentation-relaetd attacks

ICMPv6 Redirects

 ICMP redirects are very similar to the ICMP counterpart, except for:
 The Hop Limit is required to be 255 – this reduces exposure.
 There are no “network redirects”

 ICMPv6 redirects are an optimization – hence they can be disabled
with no interoperability implications

 Most stacks enable them by default
 In *BSDs, ICMPv6 Redirect processing is controlled with the sysctl

net.inet6.icmp6.rediraccept.

ICMPv6
Informational Messages

ICMPv6 Informational

 Echo Request/Echo response:
 Used to test node reachability (“ping6”)
 Widely supported, although disabled by default in some OSes

 Node Information Query/Response
 Specified by RFC 4620 as “Experimental”, but supported (and enabled

by default) in KAME.
 Not supported in other stacks
 Used to obtain node names or addresses.

ICMPv6 Echo Request/Echo response

 Used for the “ping6” tool, for troubleshooting
 Also usually exploited for network reconnaissance
 Some implementations ignore incoming ICMPv6 “echo requests”
 Example:

% ping6 2004::1
PING 2004::1(2004::1) 56 data bytes
64 bytes from 2004::1: icmp_seq=1 ttl=64 time=28.4 ms

--- 2004::1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.460/28.460/28.460/0.000 ms

tcpdump output

1. IP6 2004::5e26:aff:fe33:7063 > 2004::1: ICMP6, echo request, seq 1,
 length 64
2. IP6 2004::1 > 2004::5e26:aff:fe33:7063: ICMP6, echo reply, seq 1,
 length 64

sysctl’s for ICMPv6 Echo Request

 No sysctl’s in BSD’s or Linux
 ICMPv6 Echo requests can nevertheless be filtered in firewalls
 Might want to filter ICMPv6 Echo Requests in hosts (but not in

routers)

Node Information Query/Response

 Specified in RFC 4620 as “Experimental”, but included (and enabled
by default) in KAME

 Allows nodes to request certain network information about a node in
a server-less environment
 Queries are sent with a target name or address (IPv4 or IPv6)
 Queried information may include: node name, IPv4 addresses, or IPv6

addresses
 Node Information Queries can be sent with the ping6 command (“-

w” and “-b” options)

Node Information Query/Response (II)

 Response to Node Information Queries is controlled by the sysctl
net.inet6.icmp6.nodeinfo:
 0: Do not respond to Node Information queries
 1: Respond to FQDN queries (e.g., “ping6 –w”)
 2: Respond to node addresses queries (e.g., “ping6 –a”)
 3: Respond to all queries

 net.inet6.icmp6.nodeinfo defaults to 1 in OpenBSD, and to 3 in
FreeBSD.

 My take: unless you really need your nodes to support Node
Information messages, disable it (i.e., “sysctl –w
net.inet6.icmp6.nodeinfo=0).

Some examples with ICMPv6 NI (I)

 Query node names

$ ping6 -w ff02::1%vic0

PING6(72=40+8+24 bytes) fe80::20c:29ff:feaf:194e%vic0 --> ff02::1%vic0
41 bytes from fe80::20c:29ff:feaf:194e%vic0: openbsd46.my.domain.
30 bytes from fe80::20c:29ff:fe49:ebdd%vic0: freebsd
41 bytes from fe80::20c:29ff:feaf:194e%vic0: openbsd46.my.domain.
30 bytes from fe80::20c:29ff:fe49:ebdd%vic0: freebsd
41 bytes from fe80::20c:29ff:feaf:194e%vic0: openbsd46.my.domain.
30 bytes from fe80::20c:29ff:fe49:ebdd%vic0: freebsd
--- ff02::1%vic0 ping6 statistics ---
3 packets transmitted, 3 packets received, +3 duplicates, 0.0% packet loss

Some examples with ICMPv6 NI (II)

 Query addresses

$ ping6 -a Aacgls ff02::1%vic0

PING6(72=40+8+24 bytes) fe80::20c:29ff:feaf:194e%vic0 --> ff02::1%vic0
76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
 fe80::20c:29ff:fe49:ebdd(TTL=infty)
 ::1(TTL=infty) fe80::1(TTL=infty)

76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
 fe80::20c:29ff:fe49:ebdd(TTL=infty)
 ::1(TTL=infty) fe80::1(TTL=infty)

76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
 fe80::20c:29ff:fe49:ebdd(TTL=infty)
 ::1(TTL=infty)
 fe80::1(TTL=infty)

--- ff02::1%vic0 ping6 statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss

Some examples with ICMPv6 NI (III)

 Use the NI multicast group

$ ping6 -I vic0 -a Aacgls -N freebsd

PING6(72=40+8+24 bytes) fe80::20c:29ff:feaf:194e%vic0 --> ff02::1%vic0
76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
 fe80::20c:29ff:fe49:ebdd(TTL=infty)
 ::1(TTL=infty) fe80::1(TTL=infty)

76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
 fe80::20c:29ff:fe49:ebdd(TTL=infty)
 ::1(TTL=infty) fe80::1(TTL=infty)

76 bytes from fe80::20c:29ff:fe49:ebdd%vic0:
 fe80::20c:29ff:fe49:ebdd(TTL=infty)
 ::1(TTL=infty)
 fe80::1(TTL=infty)

--- ff02::1%vic0 ping6 statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss

Neighbor Discovery for IPv6

Neighbor Discovery for IPv6
Address Resolution

Address Resolution in IPv6

 Employs ICMPv6 Neighbor Solicitation and Neighbor Advertisement
 It (roughly) works as follows:

1. Host A sends a NS: Who has IPv6 address fc01::1?

2. Host B responds with a NA: I have IPv6 address, and the
corresponding MAC address is 06:09:12:cf:db:55.

3. Host A caches the received information in a “Neighbor Cache” for some
period of time (this is similar to IPv4’s ARP cache)

4. Host A can now send packets to Host B

Neighbor Solicitation Messages

 ICMPv6 messages of Type 135, Code 0
 Used to solicit the mapping of an IPv6 address to a link-layer

address
 Only allowed option so far: “Source Link-layer address”

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Reserved |
 +-+
 | |
 // Target Address //
 | |
 +-+
 | Options ...
 +-+-+-+-+-+-+-+-+-+-+-+-

Neighbor Advertisement Messages

 ICMPv6 messages of Typo 136, Code 0
 Use to informa the maping of a IPv6 address to a link-layer address
 Only allowed option so far: “Target Link-layer address”

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Code | Checksum |
+-+
|R|S|O| Reserved |
+-+
| |
+ +
| |
+ Target Address +
| |
+ +
| |
+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-

Source/Target Link-layer Address
Options
 The Source Link-layer Address contains the link-layer address

corresponding to the “Source Address” of the packet
 The Target Link-layer address contains the link-layer address

correspondign to the “Target Address” of the Neighbor Solicitation
message.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Link-Layer Address ...
 +-+

Type: 1 for Source Link-layer Address
 2 for Target Link-layer Address

Sample Address Resolution Traffic

% ping6 2004::1

12:12:42.086657 2004::20c:29ff:fe49:ebdd > ff02::1:ff00:1: icmp6: neighbor
sol: who has 2004::1(src lladdr: 00:0c:29:49:eb:dd) (len 32, hlim 255)

12:12:42.087654 2004::1 > 2004::20c:29ff:fe49:ebdd: icmp6: neighbor adv:
tgt is 2004::1(RSO)(tgt lladdr: 00:0c:29:c0:97:ae) (len 32, hlim 255)

12:12:42.089147 2004::20c:29ff:fe49:ebdd > 2004::1: icmp6: echo request
(len 16, hlim 64)

12:12:42.089415 2004::1 > 2004::20c:29ff:fe49:ebdd: icmp6: echo reply (len
16, hlim 64)

ndisc6: Neighbor Discovery diagnostic
tool
 Can be used to send NS for a particular address
 Example:

$ /bin/rdisc6 vboxnet0
Soliciting ff02::2 (ff02::2) on vboxnet0...

Hop limit : 64 (0x40)
Stateful address conf. : No
Stateful other conf. : No
Router preference : medium
Router lifetime : 1800 (0x00000708) seconds
Reachable time : unspecified (0x00000000)
Retransmit time : unspecified (0x00000000)
 Source link-layer address: 08:00:27:F9:73:04
 Prefix : 2000:1::/64
 Valid time : 2592000 (0x00278d00) seconds
 Pref. time : 604800 (0x00093a80) seconds
 from fe80::a00:27ff:fef9:7304

Neighbor Cache

 Stores information learned from the Address Resolution mechanism
 Each entry (IPv6 address, link-layer address) can be in one of the

following states:

NC entry state Semantics

INCOMPLETE Add. Res. Is in progress (not yet determined)

REACHABLE Neighbor is reachable

STALE Not known to be reachable

DELAY Not known to be reachable (wait for indication)

PROBE Not known to be reachble (probes being sent)

Neighbor Cache (contents in *BSD)

 Sample output of “ndp –a” (BSDs):

% ndp -a
Neighbor Linklayer Address Netif Expire S Flags
2004:1::f8dd:347d:8fd8:1d2c 0:c:29:49:eb:e7 em1 permanent R
fe80::20c:29ff:fec0:97b8%em1 0:c:29:c0:97:b8 em1 23h48m16s S R
2004:1::20c:29ff:fe49:ebe7 0:c:29:49:eb:e7 em1 permanent R
fe80::20c:29ff:fe49:ebe7%em1 0:c:29:49:eb:e7 em1 permanent R
2004::1 0:c:29:c0:97:ae em0 23h49m27s S R
2004::20c:29ff:fe49:ebdd 0:c:29:49:eb:dd em0 permanent R
fe80::20c:29ff:fe49:ebdd%em0 0:c:29:49:eb:dd em0 permanent R
fe80::20c:29ff:fec0:97ae%em0 0:c:29:c0:97:ae em0 23h48m16s S R
2004::d13e:2428:bae7:5605 0:c:29:49:eb:dd em0 permanent R

Neighbor Cache (contents in Linux)

 Sample output of “ip -6 neigh show” (Linux):

$ ip -6 neigh show
fe80::a00:27ff:fef9:7304 dev vboxnet0 lladdr 08:00:27:f9:73:04 router STALE
2000::4000 dev vboxnet0 lladdr 11:22:33:44:55:66 PERMANENT
2000:1::1 dev vboxnet0 lladdr 08:00:27:f9:73:04 router REACHABLE
fe80::fc8d:15ed:7f43:68ea dev wlan0 lladdr 00:21:5c:0b:5d:61 router STALE

Address Resolution
some attacks...

“Man in the Middle” or Denial of Service

 They are the IPv6 version of IPv4’s ARP cache poisoning
 Without proper authentication mechanisms in place, its trivial for an

attacker to forge Neighbor Discovery messages
 Attack:

 “Listen” to incoming Neighbor Solicitation messages, with the victim’s
IPv6 address in the “Target Address” field

 When a NS is received, respond with a forged Neighbor Advertisement
 If the “Target Link-layer address” corresponds to a non-existing

node, traffic is dropped, resulting in a DoS.
 If the “Target Link-layer address” is that of the attacker, he can

perform a “man in the middle” attack.

Sniffing in a switched network

 Rather than trying to overflow the switch table, a more elegant
attack can be performed-

 Map the target addresses to either:
 The broadcast Ethernet address (ff:ff:ff:ff:ff:ff)
 Multicast Ethernet addresses (e.g., 33:33:00:00:01)

 This will cause traffic to be sent to all nodes (including the attacker
and the legitimate recipient)

 All BSD variants tested don’t check for these special addresses!

Introduce a forwarding loop at a router

 Respond the Neighbor solicitation sent by a router
 The router will receive a copy of the packet it sends (assuming the

NIC allows this)
 The Hop Limit of the packet will be decremented, and the packet will

be resent
 The process will be repeated until the the Hop Limit is decremented

to 0.

Overflowing the Neighbor Cache

 Some implementations (e.g., FreeBSD and NetBSD) don’t enforce
limits on the number of entries that can be created in the Neighbor
Cache

 All kernel memory can be tied for the Neighbor Cache, leading to a
system panic.

 Attack:
 Send a large number of Neighbor Solicitation messages with a Source

Link-layer address
 For each received packet, the victim host creates an entry in the

neighbor Cache
 And if entries are added at a faster rate than “old entries” are pruned

from the Neighbor Cache....

Overflowing the Neighbor Cache (II)

Some sysctl’s for Neighbor Discovery
(OpenBSD)
 net.inet6.ip6.neighborgcthresh (defaults to 2048): Maximum

number of entries in the Neighbor Cache
 net.inet6.icmp6.nd6_prune (defaults to 1): Interval between

Neighbor Cache babysitting (in seconds).
 net.inet6.icmp6.nd6_delay (defaults to 5): specifies the

DELAY_FIRST_PROBE_TIME constant from RFC 4861.
 net.inet6.icmp6.nd6_umaxtries (defaults to 3): specifies the

MAX_UNICAST_SOLICIT constant from RFC 4861
 net.inet6.icmp6.nd6_mmaxtries (defaults to 3): specifies the

MAX_MULTICAST_SOLICIT constant from RFC 4861.
 net.inet6.icmp6.nd6_useloopback (defaults to 1): If non-zero,

uses the loopback interface for local traffic.
 net.inet6.icmp6.nd6_maxnudhint (defaults to 0): Maximum

number of upper-layer reachability hints before normal ND is
performed.

Address Resolution
countermeasures

Secure Neighbor Discovery (SeND)

 SeND a cryptographic approach to the problem of forged Neighbor
Solicitation messages
 Certification paths certify the authority of routers
 Cryptographically-Generated Addresses (CGA) bind IPv6 addresses to

an assymetric key pair
 RSA signatures protect all Neighbor Discovery messages

 However, SeND is hard to deploy:
 Not widely supported
 The requirement of a PKI is a key obstacle for its deployment

Neighbor Discovery traffic monitoring

 Some tools keep (e.g., NDPMon) record of the legitimate mappings
(IPv6 -> Ethernet), and sound an alarm if the mapping changes

 This is similar to arpwatch in IPv4
 However, these tools can be trivially evaded:

 ND runs on top of IPv6
 Packets may contain IPv6 Extension Headers
 Packets may be fragmented
 And since traffic occurs in the local network, there is no "man in the

middle" to reassemble the packets or "normalize" them

Neighbor Discovery traffic monitoring (II)

 An arbitrary number of Extension headers can be
inserted to make traffic monitoring harder

 The monitor tool would need to follow the entire header
chain to "spot" the Neighbor Discovery messages.

I P v 6
H e a d e r

I P v 6
H e a d e r D e s t i n a t i o n O p t i o n s

H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

N H = 6 0 N H = 5 8

Neighbor Discovery traffic monitoring (III)

 Combination of a Destination Options Header and fragmentation:

Original
Packet

First
Fragment

Second
Fragment

I P v 6
H e a d e r

I P v 6
H e a d e r D e s t i n a t i o n O p t i o n s

H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

N H = 6 0 N H = 5 8

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I P v 6
H e a d e r

I P v 6
H e a d e r

N H = 4 4

F r a g m e n t
H e a d e r

F r a g m e n t
H e a d e r

N H = 6 0

D e s t i n a t i o n O p t i o n s
H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

N H = 5 8

I P v 6
H e a d e r

I P v 6
H e a d e r

N H = 4 4

F r a g m e n t
H e a d e r

F r a g m e n t
H e a d e r D e s t . O p t .

H e a d e r

D e s t . O p t .
H e a d e r

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

N H = 6 0

Can only tell there’s
ICMv6 inside

Can only tell there’s
Dest. Opt. Hdr inside!

Neighbor Discovery traffic monitoring (IV)

 Two Destination Options headers, and fragmentation:

Original
Packet

First
Fragment

Second
Fragment

I P v 6
H e a d e r

I P v 6
H e a d e r F r a g m e n t

H e a d e r

F r a g m e n t
H e a d e r

N H = 4 4 N H = 6 0

D e s t . O p t i o n s
H e a d e r

D e s t . O p t i o n s
H e a d e r

N H = 6 0

I P v 6
H e a d e r

I P v 6
H e a d e r F r a g m e n t

H e a d e r

F r a g m e n t
H e a d e r

N H = 4 4 N H = 6 0

D . O p t .
H d r .

D . O p t .
H d r . D e s t . O p t i o n s

H e a d e r

D e s t . O p t i o n s
H e a d e r

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

N H = 5 8

I P v 6
H e a d e r

I P v 6
H e a d e r D e s t i n a t i o n O p t i o n s

H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

N H = 6 0 N H = 6 0

D e s t . O p t i o n s
H e a d e r

D e s t . O p t i o n s
H e a d e r

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

N H = 5 8

Can only tell there’s
Dest. Opt. Hdr inside!

Can only tell there’s
Dest. Opt. Hdr inside!

Restricting access to the local network

 Neighbor Discovery traffic is limited to the local network
 Separation of systems in different networks limits the damage an

attacker can cause
 This is not always possible, but still desirable

Static Neighbor Cache entries

 Static entries can be including in the Neighbor Cache
 This is similar to static entries in the ARP Cache en IPv4
 If a static NC entry is present for an IPv6, the host need not employ

Neighbor Discovery
 Beware that some implementations used to remain vulnerable to ND

attacks anyway!

Static Neighbor Cache entries in BSDs

 The Neighbor Cache is manipulated with the "ndp" command
 Static entries are added as follows:

ndp –s IPV6ADDR MACADDR
 If IPV6ADDR is a link-local address, an interface index is specified

as follows:

ndp –s IPV6ADDR%IFACE MACADDR

Static Neighbor Cache entries in Linux

 The Neighbor Cache is manipulated with the "ip" command.
 Static entries are added as follows:

sudo ip neigh add to IPV6ADDR lladdr MACADDR dev IFACE nud
permanent

 Verify the results with:

ip -6 neigh show

IPv6 Stateless Address
Autoconfiguration (SLAAC)

Stateless Address Autoconfiguration

 It works (roughly) as follows:
1. The host configures a link-local address

2. It checks that the address is unique – i.e., it performs Duplicate
Address Detection (DAD) for that address

 Sends a NS, and waits for any answers

1. The host sends a Router Solicitation message

2. When a Router Advertisement is received, it configures a “tentative”
IPv6 address

3. It checks that the address is unique – i.e., it performs Duplicate
Address Detection (DAD) for that address

 Sends a NS, and waits for any answers

1. If the address is unique, it typically becomes a “preferred” address

Address Autoconfiguration flowchart

Router Solicitation Messages

 ICMPv6 messages of Type 133, Code 0
 Used to solicit network configuration information to local routers
 Only allowed option so far: Source Link-layer Address

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Reserved |
 +-+
 | Options ...
 +-+-+-+-+-+-+-+-+-+-+-+-

Router Advertisement Messages

 ICMPv6 messages of Type 134, Code 0
 Used to announce network configuration information to local hosts

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Cur Hop Limit |M|O|H|Prf|Resvd| Router Lifetime |
 +-+
 | Reachable Time |
 +-+
 | Retrans Timer |
 +-+
 | Options ...
 +-+-+-+-+-+-+-+-+-+-+-+-

Possible Options in RA messages

 ICMPv6 Router Advertisements may contain the following options:
 Source Link-layer address
 Prefix Information
 MTU
 Route Information
 Recursive DNS Server

 Usually, they include many of them

Prefix Information Option

 Identified by a Type of 3
 Specifies “on-link” and “auto-configuration” prefixes

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Prefix Length |L|A|R|Reserved1|
 +-+
 | Valid Lifetime |
 +-+
 | Preferred Lifetime |
 +-+
 | Reserved2 |
 +-+
 | |
 // Prefix //
 | |
 +-+

Router Information Option

 Identified by a Type of 24
 Advertises specific routes, with different priorities

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length | Prefix Length |Resvd|Prf|Resvd|
+-+
| Route Lifetime |
+-+
| Prefix (Variable Length) |
. .
. .
+-+

MTU Option

 Identified by a Type of 5
 Specifies the MTU to be used for this link

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length | Reserved |
+-+
| MTU |
+-+

RDNSS Option

 Identified by a Type of 24
 Used to advertise recursive DNS servers

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length | Reserved |
+-+
| Lifetime |
+-+
| |
: Addresses of IPv6 Recursive DNS Servers :
| |
+-+

Sample Configuration

 Sample output of “ifconfig –a” (BSDs):

ifconfig -a
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM>
ether 00:0c:29:49:eb:dd
inet 10.0.0.42 netmask 0xffffff00 broadcast 10.0.0.255
inet6 fe80::20c:29ff:fe49:ebdd%em0 prefixlen 64 scopeid 0x1
inet6 2004::20c:29ff:fe49:ebdd prefixlen 64 autoconf
inet6 2004::d13e:2428:bae7:5605 prefixlen 64 autoconf temporary
nd6 options=23<PERFORMNUD,ACCEPT_RTADV,AUTO_LINKLOCAL>
media: Ethernet autoselect (1000baseT <full-duplex>)
status: active

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
options=3<RXCSUM,TXCSUM>
inet 127.0.0.1 netmask 0xff000000
inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5
nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>

Sample Configuration

 Sample output of “netstat –r –p ip6” (BSDs):

netstat –r –p ip6
Internet6:
Destination Gateway Flags Netif Expire
:: localhost UGRS lo0 =>
default fe80::20c:29ff:fec UG em1
localhost localhost UH lo0
::ffff:0.0.0.0 localhost UGRS lo0
2004:1:: link#2 U em1
2004:1::20c:29ff:f link#2 UHS lo0
2004:1::f8dd:347d: link#2 UHS lo0
fe80:: localhost UGRS lo0
fe80::%em1 link#2 U em1
fe80::20c:29ff:fe4 link#2 UHS lo0
fe80::%lo0 link#5 U lo0
fe80::1%lo0 link#5 UHS lo0
ff01:1:: fe80::20c:29ff:fe4 U em0
ff01:2:: fe80::20c:29ff:fe4 U em1
ff01:5:: localhost U lo0
ff02:: localhost UGRS lo0
ff02::%em1 fe80::20c:29ff:fe4 U em1
ff02::%lo0 localhost U lo0

Neighbor Cache (prefixes in *BSD)

 Sample output of “ndp –p” (BSDs):

% ndp -p
2004::/64 if=em0
flags=LAO vltime=2592000, pltime=604800, expire=29d23h57m4s, ref=2
 advertised by
 fe80::20c:29ff:fec0:97ae%em0 (reachable)
2004:1::/64 if=em1
flags=LAO vltime=2592000, pltime=604800, expire=29d23h50m34s, ref=2
 advertised by
 fe80::20c:29ff:fec0:97b8%em1 (reachable)
fe80::%em1/64 if=em1
flags=LAO vltime=infinity, pltime=infinity, expire=Never, ref=0
 No advertising router
fe80::%em0/64 if=em0
flags=LAO vltime=infinity, pltime=infinity, expire=Never, ref=0
 No advertising router
fe80::%lo0/64 if=lo0
flags=LAO vltime=infinity, pltime=infinity, expire=Never, ref=0
 No advertising router

Neighbor Cache (default routers in *BSD)

 Sample output of “ndp –r” (BSDs):

% ndp -r
fe80::20c:29ff:fec0:97b8%em1 if=em1, flags=, pref=medium, expire=20m23s
fe80::20c:29ff:fec0:97ae%em0 if=em0, flags=, pref=medium, expire=26m53s

IPv6 SLAAC
some sample attacks…

Disable an Existing Router

 Forge a Router Advertisement message that impersontes the local
router

 Set the “Router Lifetime” to 0 (or some other small value)
 As a result, the victim host will remove the router from the “default

routers list”

Exploit DAD for Denial of Service

 Listen to Neighbor Solicitation messages with the Source Address
set to the IPv6 “unspecified” address (::).

 When such a message is received, respond with a Neighbor
Advertisement message

 As a resul, the address will be considered non-unique, and DAD will
fail.

 The host will not be able to use that “tentative” address

Advertise Malicious Network Parameters

 An attacker could advertise malicious network parameters for the
purpose of Denial of Service or performance-degrading.

 For example, it could advertise a very small Current Hop Limit such
that packets be discarded by the intervenning routers

Possible countermeasures

 Deploy SeND (SEcure Neighbor Discovery)
 Monitor Neighbor Discovery traffic (e.g., with NDPMon)
 Restrict access to the local network
 Deploy Router Advertisement Guard (RA-Guard)

Router Advertisement Guard

 Many organizations employ “RA-Guard” as the first line of defense
against attacks based on forged Router-Advertisements

 RA-Guard works (roughly) as follows:
 A layer-2 device is configured such that it accepts Router

Advertisements on a specified port.
 Router Advertisement messages received on other port are silently

dropped (At layer-2)
 The RA-Guard mechanism relies on the device’s ability to identify

Router Advertisement messages

Problem Statement

 The specifications allow for the use of multiple extension headers,
even of the same type – and implementations support this.

 This is even allowed for Neighbor Discovery messages, that
currently make no legitimate use of IPv6 Extension Headers.

 Thus, the structure of the resulting packet becomes increasingly
complex, and packet filtering becomes virtually impossible.

RA-Guard: Evasion technique #1

 RA-Guard implementations fail to process the entire IPv6
header chain

I P v 6
H e a d e r

I P v 6
H e a d e r D e s t i n a t i o n O p t i o n s

H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

N H = 6 0 N H = 5 8

RA-Guard: Evasion technique #2

 Combination of a Destination Options Header and fragmentation:

Original
Packet

First
Fragment

Second
Fragment

I P v 6
H e a d e r

I P v 6
H e a d e r D e s t i n a t i o n O p t i o n s

H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

N H = 6 0 N H = 5 8

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I P v 6
H e a d e r

I P v 6
H e a d e r

N H = 4 4

F r a g m e n t
H e a d e r

F r a g m e n t
H e a d e r

N H = 6 0

D e s t i n a t i o n O p t i o n s
H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

N H = 5 8

I P v 6
H e a d e r

I P v 6
H e a d e r

N H = 4 4

F r a g m e n t
H e a d e r

F r a g m e n t
H e a d e r D e s t . O p t .

H e a d e r

D e s t . O p t .
H e a d e r

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

N H = 6 0

Can only tell there’s
ICMv6 inside

Can only tell there’s
Dest. Opt. Hdr inside!

RA-Guard: Evasion technique #2(++)

 Two Destination Options headers, and fragmentation:

Original
Packet

First
Fragment

Second
Fragment

I P v 6
H e a d e r

I P v 6
H e a d e r F r a g m e n t

H e a d e r

F r a g m e n t
H e a d e r

N H = 4 4 N H = 6 0

D e s t . O p t i o n s
H e a d e r

D e s t . O p t i o n s
H e a d e r

N H = 6 0

I P v 6
H e a d e r

I P v 6
H e a d e r F r a g m e n t

H e a d e r

F r a g m e n t
H e a d e r

N H = 4 4 N H = 6 0

D . O p t .
H d r .

D . O p t .
H d r . D e s t . O p t i o n s

H e a d e r

D e s t . O p t i o n s
H e a d e r

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

N H = 5 8

I P v 6
H e a d e r

I P v 6
H e a d e r D e s t i n a t i o n O p t i o n s

H e a d e r

D e s t i n a t i o n O p t i o n s
H e a d e r

N H = 6 0 N H = 6 0

D e s t . O p t i o n s
H e a d e r

D e s t . O p t i o n s
H e a d e r

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

I C M P v 6
R o u t e r

A d v e r t i s e m e n t

N H = 5 8

Can only tell there’s
Dest. Opt. Hdr inside!

Can only tell there’s
Dest. Opt. Hdr inside!

Some comments about RA-Guard

 The use of a single “Destination Options” header is enough to evade
most implementations of RA-Guard.

 If a Fragment Header is combined with two Destination Options
headers, it becomes impossible for layer-2 device to filter forged
Router Advertisements.

 This technique can also be exploited to circumvent Neighbor
Discover monitoring tools such as NDPMon

 See my ongoing work on RA-Guard evasion:
 http://tools.ietf.org/id/draft-gont-v6ops-ra-guard-evasion-01.txt
 http://tools.ietf.org/id/draft-gont-6man-nd-extension-headers-01.txt
 Or http://tools.ietf.org/id/gont

http://tools.ietf.org/id/draft-gont-v6ops-ra-guard-evasion-01.txt
http://tools.ietf.org/id/draft-gont-6man-nd-extension-headers-01.txt
http://tools.ietf.org/id/gont
http://tools.ietf.org/id/gont
http://tools.ietf.org/id/gont
http://tools.ietf.org/id/gont
http://tools.ietf.org/id/gont
http://tools.ietf.org/id/gont

Some sysctl’s for autoconf (OpenBSD)

 net.inet6.ip6.accept_rtadv (defaults to 1): Controls whether
Router Advertisements are accepted.

 net.inet6.ip6.dad_count (defaults to 1): Number of DAD probes
sent when an interface is first brought up

 net.inet6.ip6.maxifprefixes (defaults to 16): Maximum number
of prefixes per interface.

 net.inet6.ip6.maxifdefrouters (defaults to 16): maximum
number fo default routers per interface.

IPv6 super-cookies

 When SLAAC is employed, the Interface ID is set to a Modified EUI-
64 Identifier (based on the MAC address)

 Since MAC addresses are globally-unique, this results in a “super-
cookie” (no, I didn't coin the term myself :-))

 Hosts can be traced as they move from one network to another
 The prefix will change, but the globally-unique Interface Identifier will

remain the same

IPv6 Privacy Extensions

 To MITIGate this privacy issue, “Privacy Extensions for SLAAC”
were standardized (RFC 4941)

 Basically, the MAC-derived ID is replaced with a randomly-
generated ID, and addresses are regenerated over time

– This may be undesirable in some scenarios, since it makes logging
harder

 Some OSes use (?) an alternative scheme:
 The Interface ID is selected from a result of a hash function over the

prefix and some secret value
 Addresses are “constant” for any given prefix
 But the Interface-ID changes as the host moves
 This approach has the best of the “two worlds”

sysctl’s for Privacy Addresses

 Privacy extensions for autoconf is implemented in FreeBSD (but not
in, e.g., OpenBSD)

 These sysctl’s control their operation:
 net.inet6.ip6.use_tempaddr (defaults to 0)

 Controls whether Privacy addresses are configured

 net.inet6.ip6.temppltime (defaults to 86400)
 Specifies the “preferred lifetime” for privacy addresses

 net.inet6.ip6.tempvltime (defaults to 604800)
 Specifies the “valid lifetime” for privacy addresses

 net.inet6.ip6.prefer_tempaddr (defaults to 0)
 Controls whether privacy addresses are “preferred” (i.e., whether outgoing

“conections” should use privacy addresses)

Dynamic Host Configuration
Protocol version 6 (DHCPv6)

Brief Overview

 IPv6 version of DHCPv4: mechanism for stateful configuration
 It implements “prefix delegation”, such that a DHCPv6 server can

assign not only an IPv6 address, but also an IPv6 prefix.
 It is an optional mechanism which is invoked only if specified by

Router Advertisement messages.
 It used to be the only mechanism available to advertise recursive

DNS servers
 It can be exploited in a similar way to Router Advertisement

messages.
 It suffers the same problems as IPv6 SLAAC:

 If no authentication is enforced, it is trivial for an attacker to forge
DHCPv6 packets

 Layer2- mitigations can be easily circumvented with the same
techniques as for RA-Guard

Multicast Listener Discovery

Brief Overview

 A generic protocol that allows hosts to inform local routers which
multicast groups they are interested in.

 Routers use the infomation to decide which packets must be
forwarded to the local segment.

 Since Neighbor Discovery uses multicast addresses (the solicited-
node multicast addresse), MLD is used by all IPv6 nodes

 In practice, they only use for MLD with Neighbor Discovery is MLD-
snooping switches – switches that interpret MLD packet to decide
on which ports packets should be forwarded.

 Potential issues: If a MLD-snooping switch is employed, MLD could
be exploited for Denial of Service attacks.

 MLDv2 implements per-source filtering capabilities, and greatly
increases the complexity of MLD(v1).

 Security-wise, MLDv1 should be preferred.

IPsec Support

Brief overview and considerations

Myth: “IPv6 is more secure than IPv4 because security was
incorporated in the design of the protocol, rather than as an ‘add-
on’”

 This myth originated from the fact that IPsec support is mandatory
for IPv6, but optional for IPv4

 In practice, this is irrelevant:
 What is mandatory is IPsec support, not IPsec usage.
 And nevertheless, many IPv4 implementations support IPsec, while there

exist IPv6 implementations that do not support IPsec.
 Virtually all the same IPsec deployment obstacles present in IPv4 are

also present in IPv6.

 The IETF has acknowledged this fact, and is currently changing
IPsec support in IPv6 to “optional”

 Conclusion: there is no reason to expect increased use of IPsec as a
result of IPv6 deployment

DNS support for IPv6

Brief Overview

 AAAA (Quad-A) records enable the mapping of domain names to
IPv6 addresses

 The zone “ip6.arpa” is used for the reverse mapping (i.e., IPv6
addresses to domain names)

 DNS transport can be IPv4 and/or IPv6
 Troubleshooting tools such as “dig” already include support for IPv6

DNS features
 Security implications:

 Increased size of DNS responses due to larger addresses might be
exploited for DDos attacks

Looking for IPv6-enabled hosts

 The dig tool can be used to investigate IPv6-related DNS
Reseource Records. Example:

 $ dig www.si6networks.com aaaa

 ; <<>> DiG 9.7.3 <<>> www.si6networks.com aaaa

 ;; global options: +cmd

 ;; Got answer:

 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 12806

 ;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

 ;; QUESTION SECTION:

 ;www.si6networks.com. IN AAAA

 ;; ANSWER SECTION:

 www.si6networks.com. 12666 IN AAAA 2a02:27f8:1025:18::232

 ;; Query time: 1 msec

 ;; SERVER: 172.31.252.1#53(172.31.252.1)

 ;; WHEN: Wed Nov 16 01:04:38 2011

 ;; MSG SIZE rcvd: 65

IPv6 reverse mapping

 The dig tool can be also used to obtain the reverse mappings. Example:

$ dig -x 2a02:27f8:1025:18::232

; <<>> DiG 9.7.3 <<>> -x 2a02:27f8:1025:18::232

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 34592

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;2.3.2.0.0.0.0.0.0.0.0.0.0.0.0.0.8.1.0.0.5.2.0.1.8.f.7.2.2.0.a.2.ip6.arpa. IN PTR

;; ANSWER SECTION:

2.3.2.0.0.0.0.0.0.0.0.0.0.0.0.0.8.1.0.0.5.2.0.1.8.f.7.2.2.0.a.2.ip6.arpa. 1000 IN PTR
srv01.bbserve.nl.

;; Query time: 269 msec

;; SERVER: 172.31.252.1#53(172.31.252.1)

;; WHEN: Wed Nov 16 01:12:48 2011

;; MSG SIZE rcvd: 120

IPv6 Transition Co-Existence
Technologies

IPv6 Transition/Co-existence Technologies

 Original transition plan: “deploy IPv6 before we ran out of IPv4
addresses, and eventually turn off IPv4 when no longer needed” – it
didn’t happen

 The current transition/co-existence plan is based on a toolbox:
 Dual-stack
 Tunnels
 Translation

 Their use is intented for different networks setups
 Dual-stack is enabled by default in most general-purpose OSes
 Some transition mechanisms (e.g. Teredo an ISATAP) are enabled

by default in smoe OSes (e.g. Windows Vista and Windows 7)

Transition Technologies
Dual Stack

Dual-stack

 Each node supports both IPv4 and IPv6
 Domain names include both A and AAAA (Quad A) records
 IPv4 or IPv6 are used as needed
 Dual-stack was the original transition co-existence plan, and still is

the recommended strategy for servers
 Virtually all popular operating systems include native IPv6 support

enabled by default

Exploiting Native IPv6 Support

 An attacker can connect to an IPv4-only network, and forge IPv6
Router Advertisement messages. (*)

 The IPv4-only hosts would configure IPv6 connectivity
 IPv6 could be leveraged to evade network security controls (if the

network ignores IPv6)
 Possible counter-measures:

 Implement IPv6 security controls, even on IPv4-only networks.
 Disable IPv6 support in nodes that are not expected to use IPv6

(*) http://resources.infosecinstitute.com/slaac-attack/

Exploiting Native IPv6 Support (II)

 Some applications may be IPv6-enabled, but may have unexpected
behaviors when IPv6 is employed.

 They may crash, fail to log users (*), etc.
 Example:
 Possible counter-measures:

 Implement IPv6 security controls, even on IPv4-only networks.
 Disable IPv6 support in nodes that are not expected to use IPv6

(*) Gmail complete anonymity possible with IPv6. Post to the full-disclosure mailing-list. Available at:
http://lists.grok.org.uk/pipermail/full-disclosure/2010-August/075876.html

Transition Technologies
Tunnels

Tunnels

 Use the existing IPv4 Internet to transport IPv6 packets from/to IPv6
islands

 Tunnels can be:
 configured: some sort of manual configuration is needed
 automatic: the tunnel end-points are derived from the IPv6 addresses

 Configured tunnels:
 6in4
 Tunnel broker

 Automatic tunnels:
 ISATAP
 6to4
 6rd
 Teredo

6in4

 The tunnel endpoints must be manually configured
 Management can be tedious
 Security may be used as needed (e.g., IPsec)
 May operate across NATs (e.g. IPsec UDP encapsulation, or if the

DMZ function is employed)

Tunnel broker

 The Tunnel Broker is model to aid the dynamic establishment of
tunnels (i.e., relieve the administrator from manual configuration)

 The TB is used to manage the creation, modification or deletion of a
tunnel

 Example: “Tunnel Broker with the Tunnel Setup Protocol (TSP)

Tunnel Broker: Sample Implementation

 Gogoc is a tunnel broker implementation
 It even allows “anonymous” tunnel establishment (no account

needed)
 Install it, and welcome to the IPv6 Internet!
 Privacy concerns: Beware that all your traffic will most likely follow a

completely different path from your normal IPv4 traffic.

ISATAP: Brief Overview

 Intra-Site Automatic Tunnel and Addressing Protocol
 Aims at enabling IPv6 deployment withing a site with no IPv6

infrastructure -- does not work across NATs

ISATAP: Address format

 ISATAP hosts learn the IPv4 address of the ISATAP router by
resolving the name “isatap”.

 On the other hand, when an ISATAP router receives a native IPv6
packet destined to one of its ISATAP hosts, it learns the hosts' IPv4
address from the Interface ID

 |0 1|1 3|3 6|
 |0 5|6 1|2 3|
 +----------------+----------------+--------------------------------+
 |000000ug00000000|0101111011111110| IPv4 address |
 +----------------+----------------+--------------------------------+

 ISATAP uses normal global prefixes
 However, a special format is specified for the Interface ID, such that

it encodes the IPv4 address of the ISATAP host.

Exploting ISATAP

 Microsoft implementations “learn” the IPv4 address of the ISATAP
router by resolving the name “isatap” (via DNS and others)

 An attacker could forge name resolution responses to:
 Impersonate a legitimate ISATAP router
 Enable IPv6 connectivity in an otherwise IPv4-only network

 This could be used in conjunction with other attacks (e.g. forging
DNS responses such that they contain AAAA records)

6to4: Brief overview

 Enables IPv6 deployment in sites with no global IPv6 connectivity - does
not work across NATs (unless the DMZ function is used)

 6to4 architecture:

6to4: Address format

 6to4 addresses use the special prefix 2002::/16
 They encode the tunnel endpoint in part of the network prefix
 On the IPv6 world, they are treated as normal addresses

– The prefix can be used for autoconfiguration
– Packets are router towards ASes advertising reachability to the

2002::/16

 | 16 | 32 | 16 | 64 bits |
 +--------+-----------+--------+--------------------------------+
 | 2002 | V4ADDR | Subnet | Interface ID |
 +--------+-----------+--------+--------------------------------+

6to4: Packets originating at 6to4 hosts

 Packets originate at a 6to4 host as native IPv6 packets
 A 6to4 router encapsulates the packet in IPv4, and sets the IPv4

Destination Address to:
– that of a 6to4 relay (if the IPv6 destination is a native IPv6 host)
– That of the corresponding 6to4 router (if the IPv6 Destination is a

6to4 host)
 The receiving 6to4 relay decapsulates the packets and forwards

them on the native IPv6 network
 The receiving 6to4 router decapsulates the packets, and forwards

them on the 6to4-powered IPv6 network.

6to4: Packets originating from IPv6 hosts

 Packets are routed in the native IPv6 Internet towards ASes
announcing reachability to the 2002::/16 prefix

 Those ASes have deployed 6to4 relays, which help “bridge” the
IPv4 and the IP6 Internets

 They encapsulate the aforementioned packets in IPv4, and set the
IPv4 Destination Address to the one encoded in the 6to4 address

 The 6to4 router decapsulates the IPv6 packets, and forwards it to
the “local” IPv6 network

 The packet travels over the IPv4 Internet to the 6to4 router
 The IPv4 router decapsultes the IPv6 packet, and forwards it to the

6to4-powered IPv6 network

Problems with 6to4

 Lots of poorly-managed 6to4 relays have been deployed
 In most cases they introduce PMTUD black-holes (e.g. as a result of

ICMPv6 rate-limiting)
 Lack of control of which 6to4 relays are used make troubleshooting

difficult
 Use of the 6to4 anycast address makes it difficult to identify a poorly-

managed relay in the 6to4 -> native IPv6 direction
 It is always difficult to troubleshoot problems in the native IPv6 -> 6to4

direction (the user has no control over which relay is used)
 Privacy concerns:

 6to4 traffic might take a completely different path than IPv4 traffic

6rd: Brief overview

 6rd stands for “IPv6 rapid deployment”
 Enables IPv6 deployment in a site with no IPv6 infrastructure
 Builds upon 6to4 – but the whole system is implemented

within a site

6rd: Address format

 6rd uses no special prefixes – normal IPv6 Global Unicast
addresses are employed

 But the addresses encode the tunnel endpoint in the prefix
– This is only known to the 6rd routers
– Is transparent to the rest of the world

 6rd address format:

 | n bits | o bits | m bits | 128-n-o-m bits |
 +---------------+--------------+-----------+------------------------+
 | 6rd prefix | IPv4 address | subnet ID | interface ID |
 +---------------+--------------+-----------+------------------------+
 |<--- 6rd delegated prefix --->|

Teredo: Brief overview

 Aims at providing IPv6 connectivity to individual hosts behind one or
more NATs -- “last resort” mechanism for IPv6 connectivity

 It tunnels IPv6 packets over UDP/IPv4

Teredo: Brief overview (II)

 Each Teredo client is associated with a Teredo server
 The Teredo acts as an agent to the client, such that the client is

reachable from the public Internet
 Teredo systems (hosts or relays) willing to send packets to the

Teredo client talk with the corresponding Teredo server
 “Holes” will be punched in the NAT as needed
 Teredo is a “smart” transition mechanism... but the resulting

performance is usually as bas as it could possibly get.

Teredo: Address format

 Teredo uses a special prefix
 The Teredo address encodes:

– The Teredo server's IPv4 address
– The Teredo client's IPv4 address
– The Teredo client's UDP port

 Teredo address format:

 | 32 | 32 | 16 | 16 | 32 |
 +-------------+-------------+-------+------+-------------+
 | Teredo Pref | Server IPv4 | Flags | Port | Client IPv4 |
 +-------------+-------------+-------+------+-------------+

Securiy Implications of Teredo

 Teredo increases the host exposure to attack
 Hosts behind a NAT may become reachable from the public Internet
 Windows systems obtain the address of a Teredo serving by

resolving “teredo.ipv6.microsoft.com”
 An attacker could impersonate a Teredo server if he can attack the

DNS
 Privacy concerns:

 Teredo traffic might take a completely different path than IPv4 traffic

Transition Technologies
Translation

Brief overview

 All of the previous transition/co-existence technologies require
assignment of both IPv4 and IPv6 addresses – But ...what if there
are no IPv4 addresses left?

 A number of technologies have been developed to share IPv4
addresses at a large scale:
 CGN (Carrier-Grade NAT)
 A+P

 Additionally, NAT64 has been developed, such that IPv6-only hosts
can access IPv4-only hosts

The future doesn’t look like NAT-free…..

Security impications

 Translation introduces a “single point of failure” in the network
 They will be interesting targets for attackers
 Since the have been recently developed, they are likely to be buggy

Security Implications of IPv6 on IPv4
Networks

Security Implications on IPv4 Networks
Transition Technologies

Exploiting Transition Technologies

 Some systems (notably Windows) have support of trnasition
technologies enabled by default.

 These technologies could be used to circumvent security controls.
 Technologies such as Teredo could increase the attack expoure of

hosts
 Possible countermeasures:

 Enforce IPv6 security controls on IPv4 networks.
 Disable support of these technologies.
 Deploy packet filtering policies, such that these technologies are

blocked.

Filtering IPv6 Transition Technologies

Transition Technology Filtering rule

Dual-Stack Automatic (if network does not support IPv6)

IPv6-in-IPv4 tunnels IPv4 Protocol == 41

6to4 IPv4.Protocol == 41 &&
IPv4.{src,dst} == 192.88.99.0/24

ISATAP IPv4 Protocol == 41

Teredo IPv4.dst == known_teredo_servers &&
UDP.DstPort == 3544

TSP IPv4.dst == known_teredo_servers &&
{TCP,UDP}.dst == 3653

IPv6 Network Reconnaissance

IPv6 Network Reconnaisance
Host scanning

Leveraging IPv6 features

 ICMPv6 echo/request response
 Traceroute6 (based on ICMPv6 errors)
 ICMPv6 Node Information messages
 IPv6 options of type 10xxxxxx
 IPv6 multicast addresses
 Sniffing
 Special IPv4 addresses used for trasition technologies (e.g.,

Teredo)

Multicast addresses

 Multicast address (e.g. ff02::1) can be leveraged for host scanning
 However, some stacks (notably Windows Vista/7) do not respond to

Echo Requests sent to multicast addresses
 Trick: send packets with unsupported options of type 10xxxxxx

– Even Windows Vista/7 responds to these!
 Note: Hosts will tipically respond using a link-local unicast

(fe80::/10) address – i.e., this technique does not discover global
address

 Global addresses can be obtained, indirectly:
– Learn link-local addresses of hosts
– Learn global prefixes used in the subnet
– Form global addresses with the global prefixes and the Interface ID

of the local address
– Check that the addresses actually exist

Application-layer protocols

 A number of applications may leak IPv6 addresses:
 E-mail headers
 P2P applications

 Together with maling-list archives and popular search engines, they
may be an interesting vector for network reconnaisance

Example of application-layer leakeage

X-ClientAddr: 46.21.160.232
Received: from srv01.bbserve.nl (srv01.bbserve.nl [46.21.160.232])
 by venus.xmundo.net (8.13.8/8.13.8) with ESMTP id p93Ar0E4003196
 for <fernando@gont.com.ar>; Mon, 3 Oct 2011 07:53:01 -0300
Received: from [2001:5c0:1000:a::943]
 by srv01.bbserve.nl with esmtpsa (TLSv1:AES256-SHA:256)
 (Exim 4.76)
 (envelope-from <fgont@si6networks.com>)
 id 1RAg8k-0000Qf-Hu; Mon, 03 Oct 2011 12:52:55 +0200
Message-ID: <4E8993FC.30600@si6networks.com>
Date: Mon, 03 Oct 2011 07:52:44 -0300
From: Fernando Gont <fgont@si6networks.com>
Organization: SI6 Networks
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.23)
Gecko/20110922 Thunderbird/3.1.15
MIME-Version: 1.0
To: Fernando Gont <fernando@gont.com.ar>
Subject: Prueba

 Sample e-mail header:

DNS

 IPv6 addresses can be obtained by querying the DNS for AAAA
records.

 Many sites currently use domain names such as “ipv6*”
 For example, you may google for “site:ipv6*” and “site:ip6*”

Network “Neighborhood” protocols

 mDNS is increasily used for discovering peers on the same network.
 Not IPv6-specific, but could be employed with IPv6, too.
 Hosts announce themselves on the network, for “ocassional”

networking.
 This provides yet another vector for network reconnaissance

IPv6 Network Reconnaisance
Port scanning

IPv6 port-scanning

 IPv6 port scanning remains the same as in IPv4
 Nmap may be used for such purpose

 # nmap -6 -p1-10000 -n 2000:db8::1

 80/tcp open http

 135/tcp open msrpc

 445/tcp open microsoft-ds

 554/tcp open rtsp

 1025/tcp open NFS-or-IIS

 1026/tcp open LSA-or-nterm

 1027/tcp open IIS

 1030/tcp open iad1

 1032/tcp open iad3

 1034/tcp open unknown

 1035/tcp open unknown

 1036/tcp open unknown

 1755/tcp open wms

 9464/tcp open unknown

Key areas in which further work is
needed

Key areas in which further work is
needed
IPv6 resiliency

 Implementations have not really been the target of attackers, yet
 Only a handful of publicly available attack tools
 Lots of vulnerabilities and bugs still to be discovered.

IPv6 support in security devices
 IPv6 transport is not broadly supported in security devices (firewalls,

IDS/IPS, etc.)
 This is key to be able enforce security policies comparable with the IPv4

counterparts

Education/Training
 Pushing people to “Enable IPv6” point-and-click style is simply insane.
 Training is needed for engineers, technicians, security personnel, etc.,

before the IPv6 network is running.

20 million engineers need IPv6 training, says IPv6 Forum
The IPv6 Forum - a global consortium of vendors, ISPs and national research &
Education networks - has launched an IPv6 education certification programme in
a bid to address what it says is an IPv6 training infrastructure that is "way too
embryonic to have any critical impact.“ (http://www.itwire.com)

Some Conclusions

Some conclusions…

 Beware of IPv6 marketing and mythology! – “assumption is the
mother of all...err...problems” :-)

 While IPv6 provides similar features than IPv4, it uses different
mechanisms – and the devil is in the small details

 The security implications of IPv6 should be considered before it is
deployed (not after!)

 Most systems have IPv6 support enabled by default, and this has
implications on “IPv4-only” networks!

 Even if you are not planning to deploy IPv6 in the short term, most
likely you will eventually do it

 It is time to learn about and experiment with IPv6!

Questions?

Thank you!

Fernando Gont
fgont@si6networks.com

IPv6 Hackers mailing-list
http://www.si6networks.com/community/

www.si6networks.com

mailto:fgont@si6networks.com
http://www.si6networks.com/community/
http://www.si6networks.com/community/
http://www.si6networks.com/community/
http://www.si6networks.com/community/
http://www.si6networks.com/community/
http://www.si6networks.com/community/
http://www.si6networks.com/community/
http://www.si6networks.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214

