
Results of a security
assessment of the TCP and IP
protocols and common
implementation strategies

Fernando Gont
project carried out on behalf of

UK CPNI

DEEPSEC 2009 Conference
November 17-20, 2009. Vienna, Austria

About the speaker

For the last few years I have worked on security assessment
of communication protocols for the UK CPNI (Centre for the
Protection of National Infrastructure).
I’m also active at the IETF (Internet Engineering Task Force),
where I have authored a few RFCs and several Internet-drafts
(I-Ds).
Whenever possible, I contribute code to open source
operating systems (e.g., OpenBSD and FreeBSD).
More information available at: http://www.gont.com.ar

Agenda

Project overview
Discussion of some specific issues

The “new” TCP Dos attacks (Sockstress)
Remote OS detection via TCP/IP stack fingerprinting

Further work & Conclusions
Questions and (hopefully) answers

Overview
(or “what we did, and why we did what we did”)

Problem Statement

Many vulnerabilities have been found in a number of
implementations of the TCP & IP protocols, and in the
protocols themselves.
Documentation of these issues has been spread among too
many documents.
Some of the proposed counter-measures negatively impact
protocol interoperability (see e.g., Silbersack’s presentation
at BSDCan 2006).
The efforts of the security community never resulted in
changes in the corresponding IETF specifications, and
sometimes not even in the protocol implementations.
As a result, the same vulnerabilities have been re-hashed in
new implementations of the protocols and even in “brand-
new” protocols (e.g., IPv6 RHT0).

Project Overview

During 2006-2008, CPNI – formerly NISCC – embarked itself
in a project to fill this gap.
The goal: producing a security roadmap for the TCP and IP
protocols. The resulting documents are::

http://www.cpni.gov.uk/Docs/InternetProtocol.pdf
http://www.cpni.gov.uk/Docs/tn-03-09-security-assessment-TCP.pdf

This set of documents would be updated in response to the
feedback received from the comunity.
Results would finally be taken to the IETF -- both documents
have already been adopted by the IETF:

draft-ietf-opsec-ip-security (in opsec wg)
draft-ietf-tcpm-tcp-security (in tcpm wg)

Why work on TCP and IPv4 security?

TCP and IP are the two most widely used protocols in the
Internet – and will continue to be so for many years.
Applications ranging from the web to BGP rely on them.
While many security issues have been discussed in the past,
many of them have never been addressed in actual
implementations.
The recent suggestion of relying on TCP for the DNS (as a
result of DNSsec and IPv6) has put the the resiliency of TCP
implementations back into question.
Probably not a glamorous topic to work on…. but at the end
of the day TCP and IP are two building blocks that we rely
on.

Some areas of work

Propose sanity checks to perform on header fields an options
Identify TCP and IP options that currently have no legitimate
purpose
Propose algorithms for selecting header fields or options
(e.g., IP ID, TCP ephemeral ports, TCP timestamps)
Mitigate the exploitations of protocol mechanisms (e.g.,
Path-MTU Discovery, etc.)
Improve standard protocol policies with known security
implications (e.g., IP fragment reassembly, TCP congestion
contorl, etc.)

The new (?) TCP DoS attacks
(“the sky is falling.... but we cannot tell you

why”)

Source: news.softpedia.com

The “new” TCP DoS attacks

During 2008, the discovery of some (supposedly) new
vulnerabilities received their share of press.
They were “announced” by Outpost24, but no details were
provided – thus resulting in speculation by the community.
No counter-measures were proposed to vendors, either.
While not publicly credited for our work, we provided advice
to vendors on these issues.
For the most part, the vulnerabilities are:

Connection-flooding attacks (Naphta and FIN-WAIT-2 flooding
attacks)
Socket send buffer attacks (Netkill and closed windows)
TCP reassembly buffer attacks

Some insights on the recent TCP
DoS vulnerabilities

(our view of these issues)

Connection-flooding attacks
(Naphta and FIN-WAIT-2)

Naphta (connection-flooding attack)

TCP connections require end-points to keep state (in system
memory) for the connections.
Memory is a limited resource, and thus can be targeted for
exhaustion: simply establish lots of connections with the
target system.
This attack vector was known as “Naphta” -- see CERT
Advisory CA-2000-21.
To avoid exhausting his own resources simply crafts the
required packets to establish TCP connections with the
target system, thus bypassing its kernel implementation of
TCP.

Naptha attack (example)

Countermeasures for Naphta

Key problem: an actual attack does not necessarily differ
from a high-load scenario
Possible counter-measures:

Enforce per-user and pre-process limits
Enforce limits on the number of ongoing connections from a single
system/prefix at the application-layer
Enforce limits on the number of ongoing connections from a single
system/prefix at a firewall

A typical connection-termination scenario:

Problems that may arise due to the FIN-WAIT-2 state
There’s no limit on the amount of time a connection can stay in the
FIN-WAIT-2 state – connections could stay forever in FIN-WAIT-2.
When TCP gets into the FIN-WAIT-2 state there’s no user-space
controlling process (i.e., it’s hard to enforce application-layer limits)

FIN-WAIT-2 flooding attack

FIN-WAIT-2 attack (example)

Countermeasures for FIN-WAIT-2
flooding

Enforce a limit on the duration of the FIN-WAIT-2 state. E.g.,
Linux 2.4 enforces a limit of 60 seconds. Once that limit is
reached, the connection is aborted.
Enforce on the number of ongoing connections with no
controlling process.
The counter-measures for the Naptha attack still apply.
However, it is difficult for applications to enforce limits
(remember: no controlling process for the connections).
Applications should be modified so that they retain control
of the connection for most states. This can be achieved with
a conbination of the shutdown(), setsockopt(), and close().

Socket send buffer
vulnerabilities

Socket send buffer

The socket send buffer keeps a copy of those data that have
been accepted by TCP for delivery to the remote TCP end-
point.
It is possible to exploit the Socket send buffer for a memory
exhaustion attack:

Send an application request to the target system, but never
acknowledge the response (Netkill).
Send an application request, but immediately close the receive
window, so that the target TCP refrains from actually sending the
response.

Netkill

Data that have been sent but not yet acknowledged are kept
in the socket send buffer for their possible retransmission.
TCP will retransmit those data until they either get
acknowledged or the connection times out. In the mean
time, system memory is tied to those data.
Easy to exploit for memory exhaustion: establish lots of TCP
connections, send an applicattion-request on each of them,
and never acknowledge the received data.

Netkill (example)

Netkill (countermeasures)

Problem: it’s very hard to infer attack from the behavior of a
single connection.
Possible counter-measures:

Measure connection progress at the application-layer
Do not use an unnecessarily large socket send buffer
Enforce per-user and pre-process limits
Enforce limits on the number of ongoing connections from a single
system/prefix at the application-layer
Enforce limits on the number of ongoing connections from a single
system/prefix at a firewall

When dropping connection, these are possible parameters
that may provide hints for selecting the target connection:

Large amount of data queued in the TCP retransmission buffer
Small amount of data successfully transferred to the remote endpoint

Closed windows

The TCP sliding-window mechanism prevents a fast sender
from overwhelming a slow consumer application.
When the advertised window is zero, the window is said to
be closed.
The TCP sender polls the receiver from time to time to find
out if the window has opened (persist timer). However,
there’s no limit on the amount of time that the window can
be closed.
Easy to exploit for memory exhaustion: just send an
applicattion-request to the remote end-point, and close the
receive window.

Closed windows (example)

Closed windows (countermeasures)

Problem: it’s very hard to infer attack from the behavior of a
single connection.
It has been proposed that TCP should impose a limit on the
amount of time that the window can be closed. However,
this counter-measure is trivial to circumvent: just open the
window a bit from time to time.
Possible counter-measures:

Measure connection progress at the application-layer
Do not use an unnecessarily large socket send buffer
Enforce per-user and pre-process limits
Enforce limits on the number of ongoing connections from a single
system/prefix at the application-layer
Enforce limits on the number of ongoing connections from a single
system/prefix at a firewall

TCP reassembly buffer attacks

TCP reassembly buffer

When out-of-order data are received, a “hole” momentarily
exists in the data stream which must be filled before the
received data can be delivered to the application making use
of TCP’s services.

TCP

This mechanism can be exploited in at least two ways:
Create a hole in the data stream, and send a large amount of data.
Send e.g., chunks of one byte of data, separated by holes of e.g., one
byte, targeting the overhead needed to hold and link each of these
chunks of data.

Countermeasures for the reassembly buffer

TCP implementations should enforce limits on the amount of
out-of-order data that are queued at any time.
TCP implementations should enforce limits on the maximum
number of “holes” that are allowed for each connection.
Per-user and per-process limits should be enforced.
If necessary, out-of-order data could be discarded, with no
effect on interoperability (this has a performance penalty,
though).

Remote OS detection
(via TCP/IP stack fingerprinting)

Remote OS detection

A number of tools, such as nmap, can detect the operating
system in use at a remote system, via TCP/IP stack
fingerprinting.
They send a number of probe packets that different stacks
process in different ways
The precision of their results is amazingly good. – It shouldn’t
be that good!
Question: Wouldn’t it be possible for these TCP/IP stacks to
respond to most of these probes in exactly the same way?

Some fingerprinting probes

We have performed an analysis of each of the available
TCP/IP stack fingerprinting probes, and provided advice on
how to respond to each of these probe packets:

FIN probe
Bogus flag test
RST sampling
Port-0 probe

We expect that in the long term remote OS detection based
on these probes will have much less precision.

TCP option ordering

Another important technique for remote OS detection is to
fingerprint the TCP options used by the target system.
Different TCP implementations enable different options (by
default) in their TCP connections, set their values differently,
and frame the options differently.
More work is needed to get consensus on which options
should be included by default, how to frame them, and what
their default value shoul be.
An additional benefit from such consensus would enable
“TCP option prediction” (i.e., tune the code so that
processing of packets with the usual options in the usual
order is faster).

Further work & Conclusions

Further Work

We plan to publish a revision of the UK CPNI documents
whnever we find the cycles. Reviews are welcome!
We are pursuing this effort in the IETF to update the
specifications where necessary. However, there’s some
resistance to update/fix the specs (talk about politics). – Get
involved!

Join the tcpm wg at: https://www.ietf.org/mailman/listinfo/tcpm
Join the opsec wg at: https://www.ietf.org/mailman/listinfo/opsec

Your feedback really makes a difference.

Conclusions

Working on TCP/IPv4 security in 2006-2008 probably didn’t
have much glamour. However, it was needed.
Still in 2009, there’s lots of work to do to improve the
available TCP implementations.
The same questions keep being asked, in different contexts
(DNS, NATs, etc.)
Fortunately, we have been converging on the “right” answer.

Questions?

Acknowledgements

UK CPNI, for their continued support.
DEEPSEC organizers, for their support in this conference.

Thank you!

Fernando Gont
fernando@gont.com.ar

http://www.gont.com.ar

