IPv6 Network Reconnaissance: Theory & Practice

Fernando Gont

About...

- I have worked in security assessment of communication protocols for:
 - UK NISCC (National Infrastructure Security Co-ordination Centre)
 - UK CPNI (Centre for the Protection of National Infrastructure)
- Currently working as a security researcher for SI6 Networks (http://www.si6networks.com)
- Active participant at the Internet Engineering Task Force (IETF)
- More information at: http://www.gont.com.ar

Introduction

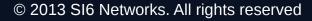
- IPv6 changes the "Network Reconnaissance" game
- Brute force address scanning attacks undesirable (if at all possible)
- Security guys need to evolve in how they do net reconnaissance
 - Pentests/audits
 - Deliberate attacks
- Network reconnaissance support in security tools has been very poor

IPv6 Network Reconnaissance

- Address scans
- DNS-based (AXFR, reverse mappings, etc.)
- Application-based
- Inspection of local data structures (NC, routing table, etc.)
- Inspection of system configuration and log files
- "Snooping" routing protocols
- draft-ietf-opsec-ipv6-host-scanning is your friend :-)

IPv6 Address Scanning

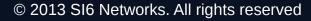
CONFidence 2013 Krakow, Poland. May 27-29, 2013


 $\ensuremath{\mathbb{C}}$ 2013 SI6 Networks. All rights reserved

What we did

- We researched the problem
- We worked on a comprehensive IPv6 Address Scanner
- We used our toolkit on the public Internet, to:
 - Test the effectiveness of our techniques (theory -> practice)
 - Gain further insights (practice -> theory)

IPv6 Address Scanning Local Networks



Overview

- Leverage IPv6 all-nodes link-local multicast address
- Employ multiple probe types:
 - Normal multicasted ICMPv6 echo requests (don't work for Windows)
 - Unrecognized options of type 10xxxxxx
- Combine learned IIDs with known prefixes to learn all addresses
- Example:

scan6 -i eth0 -L

IPv6 Address Scanning Remote Networks

Overview

- IPv6 address-scanning attacks have long been considered unfeasible
- This myth has been based on the assumption that:
 - IPv6 subnets are /64s, **and**,
 - Host addresses are "randomly" selected from that /64
- Existing research suggests this is not the case

Malone, D., "Observations of IPv6 Addresses", Passive and Active Measurement Conference (PAM 2008, LNCS 4979), April 2008, http://www.maths.tcd.ie/~dwmalone/p/addr-pam08.pdf>.

IPv6 addresses in the real world

 Malone measured (*) the address generation policy of hosts and routers in real networks

Address type	Percentage	Address type	Percentage
SLAAC	50%	Low-byte	70%
IPv4-based	20%	IPv4-based	5%
Teredo	10%	SLAAC	1%
Low-byte	8%	Wordy	<1%
Privacy	6%	Privacy	<1%
Wordy	<1%	Teredo	<1%
Others	<1%	Others	<1%

Hosts

Routers

Malone, D., "Observations of IPv6 Addresses", Passive and Active Measurement Conference (PAM 2008, LNCS 4979), April 2008, http://www.maths.tcd.ie/~dwmalone/p/addr-pam08.pdf>.

IPv6 addresses embedding IEEE IDs

	24 bits	16	bits		24 bits
	IEEE OUI	FF	FE		Lower 24 bits of MAC
	Known or guessable	Kn	IOWN		Unknown

- In practice, the search space is at most $\sim 2^{23}$ bits **feasible!**
- Example:
 - # scan6 -i eth0 -d fc00::/64 -K 'Dell Inc' -v

IPv6 addresses embedding IEEE IDs (II)

- Virtualization technologies present an interesting case
- Virtual Box employs OUI 08:00:27 (search space: ~2²³)
- VMWare ESX employs:
 - Automatic MACs: OUI 00:05:59, and next 16 bits copied from the low order 16 bits of the host's IPv4 address (search space: ~2⁸)
 - Manually-configured MACs:OUI 00:50:56 and the rest in the range 0x00000-0x3fffff (search space: ~2²²)
- Examples:
 - # scan6 -i eth0 -d fc00::/64 -V vbox
 - # scan6 -i eth0 -d fc00::/64 -V vmware -Q 10.10.0.0/8

IPv6 addresses embedding IPv4 addr.

- They simply embed an IPv4 address in the IID
- Two variants found in the wild:
 - 2000:db8::192.168.0.1 <- Embedded in 32 bits
 - 2000:db8::192:168:0:1 <- Embedde in 64 bits
- Search space: same as the IPv4 search space feasible!
- Example:
 - # scan6 -i eth0 -d fc00::/64 -Q 10.10.0.0/8

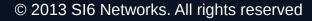
IPv6 addresses embedding service ports

- They simply embed the service port the IID
- Two variants found in the wild:
 - 2001:db8::1:80 <- n:port
 - 2001:db8::80:1 <- port:n
- Additionally, the service port can be encoded in hex vs. dec
 - 2001:db8::80 vs. 2001:db8::50
- Search space: smaller than 2⁸ feasible!
- Example:
 - # scan6 -i eth0 -d fc00::/64 -g

IPv6 "low-byte" addresses

- The IID is set to all-zeros, "except for the last byte"
 - e.g.: 2000:db8::1
- Other variants have been found in the wild:
 - 2001:db8::n1:n2 <- where n1 is typically greater than n2
- Search space: usually 2⁸ or 2¹⁶ feasible!
- Example:
 - # scan6 -i eth0 -d fc00::/64 --tgt-low-byte

IPv6 host-tracking


- SLAAC typically leads to IIDs that are constant across networks
- Sample scenario:
 - Node is known to have the IID **1:2:3:4**
 - To check whether the node is at fc00:1::/64 or fc00:2::/64:
 - ping fc00:1::**1:2:3:4** and fc00:2::**1:2:3:4**
- Examples:

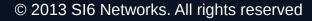
```
# scan6 -i eth0 -d fc00:1::/64 -d fc00:2::/64
-W ::1:2:3:4
```

```
# scan6 -i eth0 -m prefs.txt -w iids.txt -l -z 60 -t -v
```


IPv6 Address Scanning Advanced topics

Packet-loss detection/recovery (TODO)

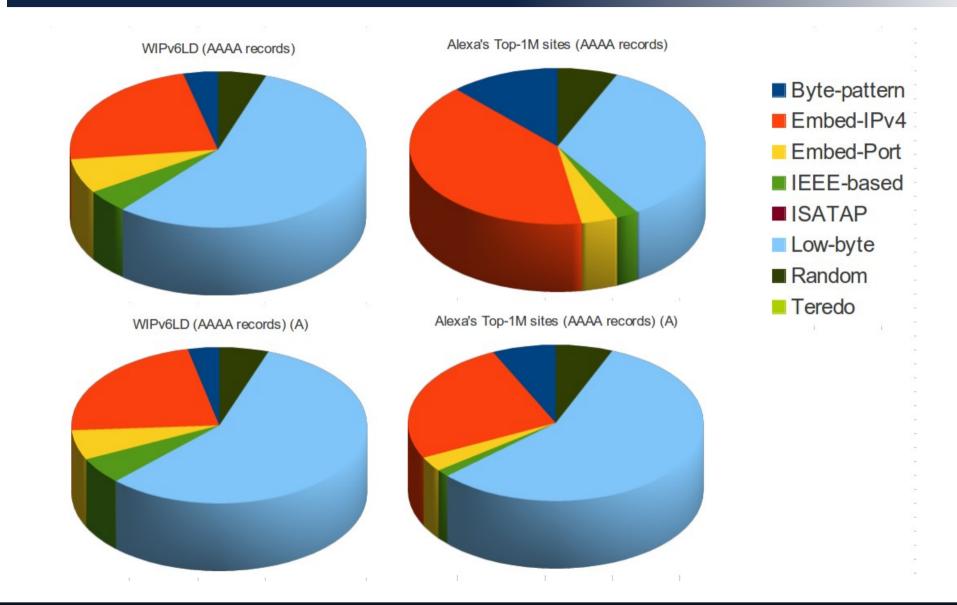
- Possible causes of packet-loss:
 - Network congestion
 - Rate-limits
 - Neighbor Cache exhaustion
- Address-scanning is essentially an open-loop!
- Workaround:
 - Obtain the last hop to a target-network
 - Probe that router periodically
 - Back-off and rewind upon packet loss



Automated heuristic scanner (TODO)

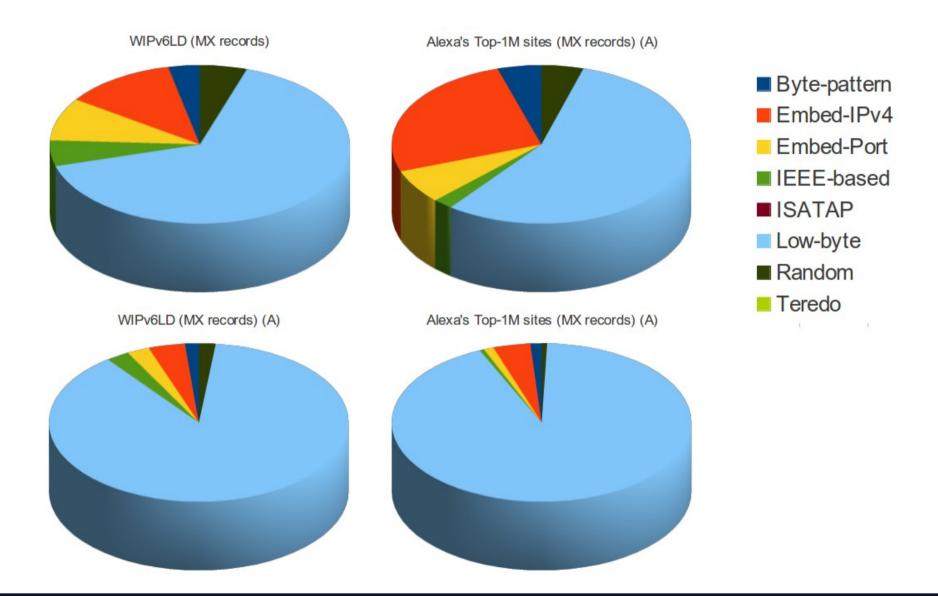
- Allow scan6 to receive IPv6 addresses known to be "alive"
- Identify the IPv6 address/IID type
- Compute new target ranges
 - "New" targets are ignored if redundant
 - Targets are coalesced with other targets if appropriate
- Different patterns -> different priorities based on sizeof(search space)
- Example:
 - # cat sources | scan6 -i eth0 -c -v

IPv6 Address Scanning Real-world data

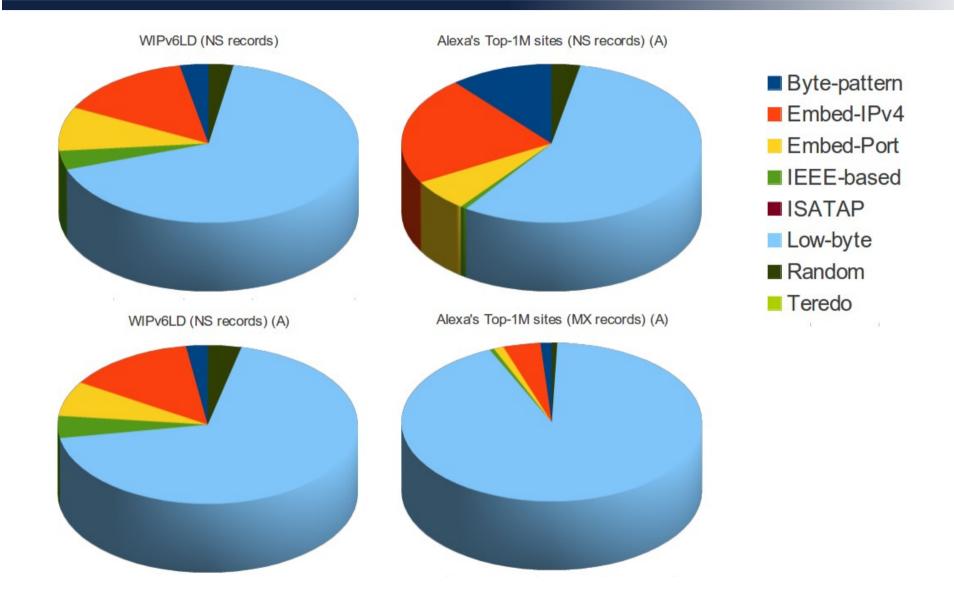


Our experiment

- Find "a considerable number of IPv6 nodes" for address analysis:
 - Alexa Top-1M sites + perl script + dig
 - World IPv6 Launch Day site + perl script + dig
- For each domain:
 - AAAA records
 - NS records -> AAAA records
 - MX records -> AAAA records
- What did we find?

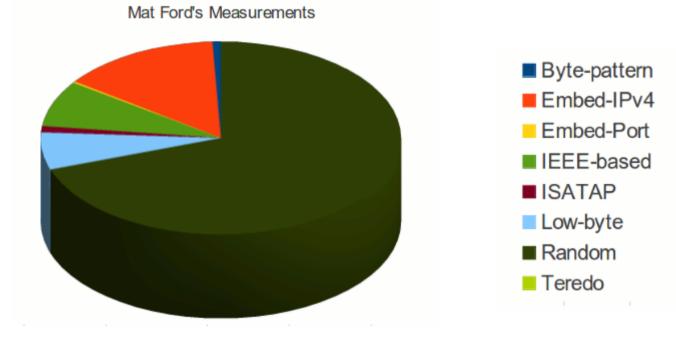

IPv6 address distribution for the web

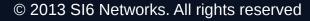
CONFidence 2013 Krakow, Poland. May 27-29, 2013


IPv6 address distribution for MXs

CONFidence 2013 Krakow, Poland. May 27-29, 2013

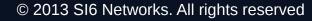
IPv6 address distribution for the DNS




CONFidence 2013 Krakow, Poland. May 27-29, 2013

Mat Ford's measurements

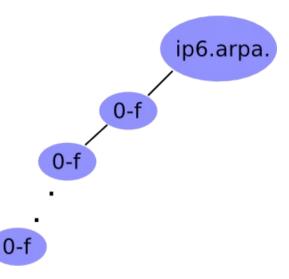
• Analysis of client IPv6 addresses from web-server log:



Further measurements (TODO)

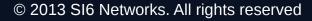
- Evaluate the reliability of different probe packets
 - Is IPv6 fragment filtering that bad?
 - How about other IPv6 extension headers?
 - How about rate limiting of ICMPv6 vs. other probe packets
- Finally, evaluate IPv6 packet-filtering practices
 - Same as for IPv4?

DNS-based IPv6 Network Reconnaissance



DNS for Network Reconnaissance

- Most of this ground is well-known from the IPv4-world:
 - DNS zone transfers
 - DNS bruteforcing
 - etc.
- DNS reverse-mappings particularly useful for "address scanning"


IPv6 DNS reverse mappings

- Technique:
 - Given a zone X.ip6.arpa., try the labels [0-f].X.ip6.arpa.
 - If an NXDOMAIN is received, that part of the "tree" should be ignored
 - Otherwise, if NOERROR is received, "walk" that part of the tree
- Example (using dnsrevenum6 from THC-IPv6):

\$ dnsrevenum6 DNSSERVER IPV6PREFIX

Aplication-based IPv6 Network Reconnaissance

Application-based Network Recon

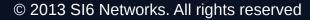
- Many application-layer protocol deal with domain-names or IPv6 addresses.
- Some applications even leave publicly trails of data exchanges
- Examples:
 - P2P aplications
 - email
 - etc.

Application-based Network Recon (II)

• Sample email header:

```
X-ClientAddr: 46.21.160.232
Received: from srv01.bbserve.nl (srv01.bbserve.nl [46.21.160.232])
       by venus.xmundo.net (8.13.8/8.13.8) with ESMTP id p93Ar0E4003196
       for <fernando@gont.com.ar>; Mon, 3 Oct 2011 07:53:01 -0300
Received: from [2001:5c0:1000:a::943]
       by srv01.bbserve.nl with esmtpsa (TLSv1:AES256-SHA:256)
       (Exim 4.76)
       (envelope-from <fgont@si6networks.com>)
       id 1RAg8k-0000Qf-Hu; Mon, 03 Oct 2011 12:52:55 +0200
Message-ID: <4E8993FC.30600@si6networks.com>
Date: Mon, 03 Oct 2011 07:52:44 -0300
From: Fernando Gont <fgont@si6networks.com>
Organization: SI6 Networks
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.23)
Gecko/20110922 Thunderbird/3.1.15
MIME-Version: 1.0
To: Fernando Gont <fernando@gont.com.ar>
Subject: Prueba
```

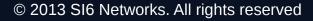

Inspection of local data structures


CONFidence 2013 Krakow, Poland. May 27-29, 2013

Inspection of local data structures

- Local data structures store valuable network information:
 - IPv6 addresses of local nodes
 - IPv6 addresses of "known" nodes
 - Routing information
 - etc
- loopback6 (upcoming) aims at collecting such information from the local nod
- Example:
 - # loopback6 --all

Inspection of system configuration & log files



System configuration and log files

- Yet another source of possibly interesting names/addresses
- Trivial approach:
 - Walk the tree and look virtually everywhere
- Improved approach:
 - Look at interesting places depending on the local operating system
- audit6 (upcoming) aims at collecting such information from the local system
- Example:
 - # audit6 --all

Snooping routing protocols

System configuration and log files

- Some sites employ interior routing protocols (RIP, OSPF, etc.)
- Snooping/participating in the protocol can provide useful info
 - Internal subnets
 - Internal routers

Conclusions

CONFidence 2013 Krakow, Poland. May 27-29, 2013

 $\ensuremath{\mathbb{C}}$ 2013 SI6 Networks. All rights reserved

Conclusions

- IPv6 changes the "Network Reconnaissance" game
- Smart address scanning is feasible
- A number of techniques still need to be explored
- Stay tuned to further developments in this area :-)

Thanks!

Fernando Gont fgont@si6networks.com @FernandoGont

SI6 Networks www.si6networks.com @SI6Networks

CONFidence 2013 Krakow, Poland. May 27-29, 2013