Recent Advances in IPv6 Security

Fernando Gont

BSDCan 2012 Ottawa, Canada. May 11-12, 2012

About...

- Security researcher and consultant for SI6 Networks
- Have worked on security assessment on communications protocols for:
 - UK NISCC (National Infrastructure Security Co-ordination Centre)
 - UK CPNI (Centre for the Protection of National Infrastructure)
- Active participant at the IETF (Internet Engineering Task Force)
- More information available at: http://www.gont.com.ar

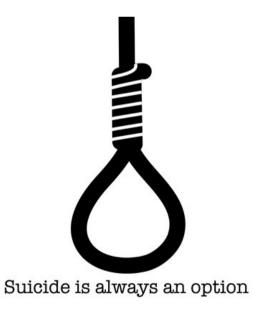
Agenda

- Disclaimer
- Motivation for this presentation
- Recent Advances in IPv6 Security
 - IPv6 Addressing
 - IPv6 Fragmentation & Reassembly
 - IPv6 First Hop Security
 - IPv6 Firewalling
 - Mitigation to some Denial of Service attacks
- Conclusions
- Questions and Answers

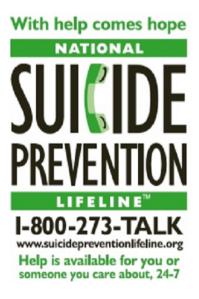
Disclaimer

- This talks assumes:
 - You know the basics of IPv4 security
 - You know the basics about IPv6 security
- Much of this is "work in progress" → your input is welcome!

Motivation for this presentation

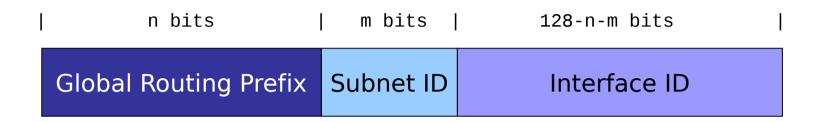

Motivation for this presentation

- Sooner or later you will need to deploy IPv6
 - In fact, you have (at least) partially deployed it, already
- IPv6 represents a number of challenges: What can we do about them?


Option #1

Option #2

Option #3


Motivation for this presentation (II)

- We have been doing a fair share of IPv6 security research
 - Identification of problems
 - Proposals to mitigate those problems
- Part of our research has been taken to the IETF
- This talk is about our ongoing work to improve IPv6 security

Advances in IPv6 Addressing

IPv6 Global Unicast Address Format

- A number of possibilities for generating the Interface ID:
 - Embed the MAC address (traditional SLAAC)
 - Embed the IPv4 address (e.g. 2001:db8::192.168.1.1)
 - Low-byte (e.g. 2001:db8::1, 2001:db8::2, etc.)
 - Wordy (e.g. 2001:db8::dead:beef)
 - According to a transition/co-existence technology (6to4, etc.)

Problem #1: IPv6 host scanning attacks

"Thanks to the increased IPv6 address space, IPv6 host scanning attacks are unfeasible. Scanning a /64 would take 500.000.000 years"

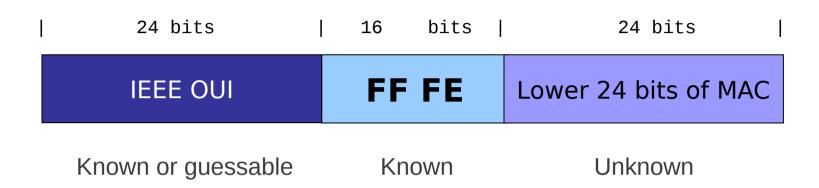
Urban legend

Is the search space for a /64 really 2⁶⁴ addresses?

IPv6 addresses in the real world

 Malone measured (*) the address generation policy of hosts and routers in real networks

Address type	Percentage
SLAAC	50%
IPv4-based	20%
Teredo	10%
Low-byte	8%
Privacy	6%
Wordy	<1%
Others	<1%


Address type	Percentage
Low-byte	70%
IPv4-based	5%
SLAAC	1%
Wordy	<1%
Privacy	<1%
Teredo	<1%
Others	<1%

Hosts Routers

Malone, D., "Observations of IPv6 Addresses", Passive and Active Measurement Conference (PAM 2008, LNCS 4979), April 2008, http://www.maths.tcd.ie/~dwmalone/p/addr-pam08.pdf>.

IPv6 addresses embedding IEEE IDs

- In practice, the search space is at most $\sim 2^{24}$ bits **feasible!**
- The low-order 24-bits are not necessarily random:
 - An organization buys a large number of boxes
 - In that case, MAC addresses are usually consecutive
 - COnsecutive MAC addresses are generally in use in geographicallyclose locations

IPv6 addresses embedding IEEE IDs (II)

- Virtualization technologies present an interesting case
- Virtual Box employs OUI 08:00:27 (search space: ~2²⁴)
- VMWare ESX employs:
 - Automatic MACs: OUI 00:05:59, and next 16 bits copied from the low order 16 bits of the host's IPv4 address (search space: ~28)
 - Manually-configured MACs:OUI 00:50:56 and the rest in the range 0x000000-0x3fffff (search space: $\sim2^{22}$)

IPv6 addresses embedding IPv4 addr.

- They simply embed an IPv4 address in the IID
- e.g.: 2000:db8::192.168..1
- Search space: same as the IPv4 search space

IPv6 "low-byte" addresses

- The IID is set to all-zeros, except for the last byte
 - e.g.: 2000:db8::1
 - There are other variants...
- Search space: usually 28 or 216

Problem #2: Host-tracking attacks

- Traditional IIDs are constant for each interface
- As the host moves, the prefix changes, but the IID doesn't
 - the 64-bit IID results in a super-cookie!
- This introduces a problem not present in IPv4: host-tracking
- Example:
 - In net #1, host configures address: 2001:db8:1::1111:22ff:fe33:4444
 - In net #2, host configures address: 2001:db8:2::1111:22ff:fe33:4444
 - The IID "1111:22ff:fe33:4444" leaks out host "identity".

"Mitigation" to host-tracking

- RFC 4941: privacy/temporary addresses
 - Random IIDs that change over time
 - Generated in addition to traditional SLAAC addresses
 - Traditional addresses used for server-like communications, temporary addresses for client-like communications
- Operational problems:
 - Difficult to manage!
- Security problems:
 - They mitigate host-tracking only partially
 - They do not mitigate host-scanning attacks

Industry mitigations for scanning attacks

- Microsoft replaced the MAC-address-based identifiers with (non-standard) randomized IIDs
 - Essentially RFC 4941, but they don't vary over time
- Certainly better than MAC-address-based IIDs, but still not "good enough"
- They mitigate host-scanning, but not host tracking constant IIDs are still present!

Auto-configuration address/ID types

	Stable	Temporary
Predictable	IEEE ID-derived	None
Unpredictable	NONE	RFC 4941

- We lack stable privacy-enhanced IPv6 addresses
 - Used to replace IEEE ID-derived addresses
 - Pretty much orthogonal to privacy addresses
 - Probably "good enough" in most cases even without RFC 4941

Stable privacy-enhanced addresses

 draft-gont-6man-stable-privacy-addresses proposes to generate Interface IDs as:

F(Prefix, Interface_Index, Network_ID, Secret_Key)

- Where:
 - F() is a PRF (e.g., a hash function)
 - Prefix SLAAC or link-local prefix
 - Interface_Index is the (internal) small number that identifies the interface
 - Network_ID could be e.g. the SSID of a wireless network
 - Secret_Key is unknown to the attacker (and randomly generated by default)

Stable privacy-enhanced addresses (II)

- This function results in addresses that:
 - Are stable within the same subnet
 - Have different Interface-IDs when moving across networks
 - For the most part, they have "the best of both worlds"
- Already accepted as a 6man wg item

IPv6 Fragmentation and Reassembly

IPv6 fragmentation

- IPv6 fragmentation performed only by hosts (never by routers)
- Fragmentation support implemented in "Fragmentation Header"
- Fragmentation Header syntax:

8 bits	8 bits	13 bits	2b 1b
Next Header	Reserved	Fragment Offset	Res M
Identification			

Fragment Identification

- Security Implications of predictable Fragment IDs well-known from the IPv4 world
 - idle-scanning, DoS attacks, etc.
- Situation exacerbated by larger payloads resulting from:
 - Larger addresses
 - DNSSEC
- But no worries, since we learned the lesson from the IPv4 world... right?

Fragment ID generation policies

Operating System	Algorithm
FreeBSD 9.0	Randomized
NetBSD 5.1	Randomized
OpenBSD-current	Randomized (based on SKIPJACK)
Linux 3.0.0-15	Predictable (GC init. to 0, incr. by +1)
Linux-current	Unpredictable (PDC init. to random value)
Solaris 10	Predictable (PDC, init. to 0)
Windows 7 Home Prem.	Predictable (GC, init. to 0, incr. by +2)

GC: Global Counter PDC: Per-Destination Counter

At least Solaris and Linux patched in response to our IETF I-D – more patches expected!

IPv6 Overlapping Fragments

- Security implications of overlapping fragments well-known (think Ptacek & Newsham, etc,)
- Nonsensical for IPv6, but originally allowed in the specs
- Different implementations allow them, with different results
- RFC 5722 updated the specs, forbidding overlapping fragments
- Most current implementations reflect the updated standard
- See http://blog.si6networks.com

IPv6 Overlapping Fragments (II)

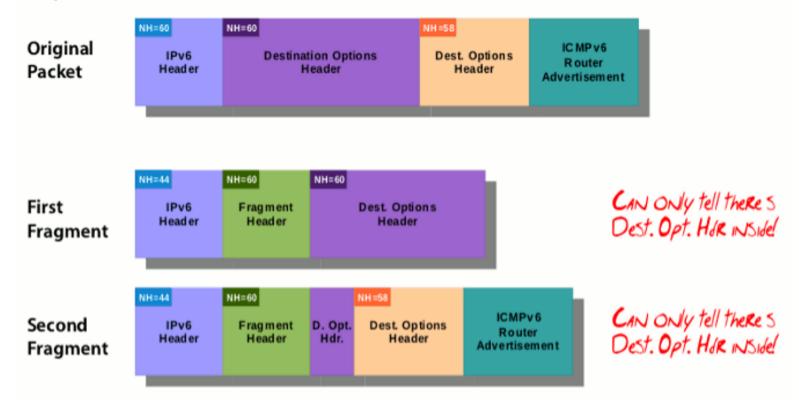
- ICMPv6 PTB < 1280 triggers inclusion of a FH in all packets to that destination (not actual fragmentation)
- Result: IPv6 atomic fragments (Frag. Offset=0, More Frag.=0)
- Some implementations mixed these packets with "normal" fragmented traffic
- draft-ietf-6man-ipv6-atomic-fragments fixes that:
 - IPv6 atomic fragments required to be processed as non-fragmented traffic
 - Document is on WGLC

Handling of IPv6 atomic fragments

Operating System	Atomic Frag. Support	Improved processing
FreeBSD 8.0	No	No
FreeBSD 8.2	Yes	No
FreeBSD 9.0	Yes	No
Linux 3.0.0-15	Yes	Yes
NetBSD 5.1	No	No
OpenBSD-current	Yes	Yes
Solaris 11	Yes	Yes
Windows Vista (build 6000)	Yes	No
Windows 7 Home Premium	Yes	No

At least OpenBSD patched in response to our IETF I-D – more patches expected!

IPv6 First Hop Security


IPv6 First Hop Security

- Security mechanisms/policies employed/enforced at the first hop (local network)
- Fundamental problem: lack of feature-parity with IPv4
 - arpwatch-like Neighbor Discovery monitoring virtually impossible
 - DHCP-snooping-like RA blocking trivial to circumvent

IPv6 First-Hop Security (II)

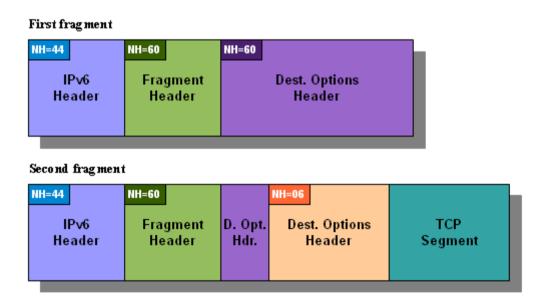
- Fundamental problem: complexity of traffic to be "processed at layer-2"
- Example:

Bringing "sanity" to ND traffic

- draft-gont-6man-nd-extension-headers forbids use of fragmentation with Neighbor Discovery
 - It makes ND monitoring feasible
 - Turns out it is vital for SEND (or SEND could be DoS'ed with fragments)
- Work in progress:
 - Discussed last year
 - Presented at IETF 83 (Paris, March 2012)
 - 6man wg to be polled about adoption shortly

RA-Guard

- Meant to block RA packets on "unauthorized" switch ports
- Real implementations trivial to circumvent
- draft-gont-6man-ra-guard-implementation contains:
 - Discussion of RA-Guard evasion techniques
 - Advice to filter RAs, while avoiding false positives
 - Document has just passed WGLC
- RA-Guard could still be evaded with overlapping fragments
 - But most current OSes forbid them
 - And anyway there's nothing we can do about this :-)



IPv6 firewalling

Problem statement

- Specs-wise, state-less IPv6 packet filtering is impossible
- The IPv6 header chain can span across multiple fragments

First step away from "insanity"

- The entire IPv6 header should be within the first PMTU bytes of the packet
- Packets with header chains that span more than one fragment are likely to be blocked – don't send them!
- Work in progress: draft-gont-6man-oversized-header-chain
 - Proposes the above "restrictions"
 - Presented at IETF 83 (Paris, March 2012)
 - To be discussed on the 6man wg mailing-list
- There's an insanely large amount of work to be done in the area of IPv6 firewalling

Mitigation to some DoS attacks

IPv6 Smurf-like Attacks

- IPv6 is assumed to eliminate Smurf-like attacks
 - Hosts are assumed to not respond to global multicast addresses
- But,
 - Options of type 10xxxxxx require hosts to generate ICMPv6 errors
 - Even if the packet was destined to a multicast address
- Probably less important than the IPv4 case (since it requires multicast routing)
- But might be an issue if multicast routing is deployed
- draft-gont-6man-ipv6-smurf-amplifier addresses this issue:
 - Discusses the problem
 - Recommends that multicasted packets must not elicit ICMPv6 errors

Some conclusions

Some conclusions

- Many IPv4 vulnerabilities have been re-implemented in IPv6
 - We just didn't learn the lesson from IPv4, or,
 - Different people working in IPv6 than working in IPv4, or,
 - The specs could make implementation more straightforward, or,
 - All of the above?
- Still lots of work to be done in IPv6 security
 - We all know that there is room for improvements
 - We need IPv6, and should work to improve it

Questions?

Thanks!

Fernando Gont

fgont@si6networks.com

IPv6 Hackers mailing-list

http://www.si6networks.com/community/

