
Security Implications of
the Internet Protocol
version 6 (IPv6)

Fernando Gont
UTN/FRH

BSDCan 2010
Ottawa, ON, Canada, May 13-14, 2010

Agenda

Ongoing work on IPv6 security at UK CPNI
Brief comparision of IPv4 and IPv6
IPv6 addressing
Fragmentation and Reassembly
Internet Control Message Protocol version 6 (ICMPv6)
Address Resolution
State-less autoconfiguration
Personal Rant on IPv6 security
Questions and (hopefully) answers

Ongoing work on IPv6 security at
UK CPNI

(or “what we’re doing on v6 security”)

Ongoing work on IPv6 security at CPNI

The UK CPNI (Centre for the Protection of National Infrastructure) is
currently working on a security assessment of the IPv6 protocol suite
Similar project to the one we carried out years ago on TCP and IPv4:

Security assessment of the protocol specifications
Security assessment of common implementation strategies
Production of assessment/Proof-Of-Concept tools
Publication of “best practices” documents

Currently cooperating with vendors and other parties
If you’re working on a IPv6 implementation, I’d like to hear from you

Brief Comparision of IPv4 & IPv6
(or “what the small differences are”)

Brief comparision of IPv4 and IPv6 (I)

IPv4 and IPv6 are very similar in terms of functionality

MandatoryOptionalIPsec support

Only in hostsBoth in hosts and routersFragmentation

ICMPv6ARPAddress resolution

ICMPv6 RS/RA & DHCPv6 (opt)DHCP & RS/RAAuto-configuration

128 bits32 bitsAddressing

IPv6IPv4

Brief comparision of IPv4 and IPv6 (II)

Header formats:

IPv6 addressing
(or “the actual motivator for IPv6”)

Types of IPv6 addresses

Unicast addresses
Identify a single interface
Packets are delivered to a single interface

Multicast addresses:
Identify a set of interfaces
Packets are delivered to that set of interfaces

Anycast addresses
Identify a set of interfaces
Packets are delivered to one interface of the aforementioned set
Syntactically indistiguishable from Unicast Addresses

IPv6 has a Scoped Address Architecture, e.g., it supports:
Link-local addresses
Global addresses

Global unicast addresses

Address format:

The Interface ID is typically 64 bits
When stateless autoconfiguration is used for network interfaces that have
Ethernet Addresses, the Interface ID is set to a value derived from that
address (modified EUI-64 format)

Global Routing Prefix Subnet ID Interface ID

| n bits | m bits | 128-n-m bits |

Global addresses & Reconnaissance

Myth: “It is unfeasible to brute-force scan an IPv6 network for alive
nodes, as the IPv6 address space is so large. Such a scan would take
ages!”

[Malone, 2008] (*) measured IPv6 address assignement patterns
For hosts,

50% autoconf, 20% IPv4-based, 10% Teredo, 8% “low-byte”
For infrastructure,

70% “low-byte”, 5% IPv4-based
Anyway, think about compromised hosts (e.g., botnets): once a host is
compromised, brute-force scanning becomes trivial (sniffing, etc.)

Size matters… only if you use it properly! ;-)

(*) Malone, D. 2008. Observations of IPv6 Addresses. Passive and Active Measurement Conference (PAM 2008,
LNCS 4979), 29–30 April 2008.

Fragmentation and Reassembly
(or “what we’re doing on v6 security”)

Fragmentation & Reassembly

The fixed IPv6 header does not include support for
fragmentation/reassembly
If needed, such support is added by an Extension Header (Fragmentation
Header)

| 8 bits | 8 bits | 13 bits | 2b |1b|

Fragment Offset: offset of the data following this header, relative to the start of the fragmentable part of
the original packet
M: “More Fragments” bit, as in the IPv4 header
Identification: together with the Source Address and Destination Address identifies fragments that
correspond to the same packet

Next Header Reserved Fragment Offset Res M

Identification

Security Implications of IPv6 fragmentation

Some are the same as for IPv4 fragmentation:
Stateful operation for a stateless protocol: risk of exhausting kernel memory!

Others are different:
The Identification field is much larger: chances of “IP ID collisions” are
reduced
Not all packets carry an “Identification” number: hence it does not leak
information so easily (e.g., think about “dumb scan”, etc.)
Overlapping fragments have been recently forbidden (RFC 5722) – although
it’s unclear the benefits of this.

sysctl’s for frag/reassembly

net.inet6.ip6.maxfragpackets: maximum number of fragmented
packets the node will accept (defaults to 200 in OpenBSD and 2160 in
FreeBSD)

0: the node does not accept fragmented traffic
-1: there’s no limit on the number of fragmented packets

net.inet6.ip6.maxfrags: maximum number of fragments the node
will accept (defaults to 200 in OpenBSD and 2160 in FreeBSD)

0: the node will not accept any fragments
-1: there is no limit on the number of fragments

ICMPv6
(or “Internet Control Protocol version 6”)

Internet Control Message Protocol version 6

ICMP is a core protocol of the IPv6 suite, and is used for:
Fault isolation (ICMPv6 errors)
Troubleshooting (ICMPv6 echo request/response)
Address Resolution
Stateless address autoconfiguration

Contrary to ICMPv4, ICMPv6 is mandatory for IPv6 operation

Fault Isolation (ICMPv6 error messages)

A number of ICMPv6 error messages are specified in RFC 4443:
Destination Unreachable

No route to destination
Beyond scope of source address
Port Unreachable, etc.

Packet Too Big
Time Exceeded

Hop Limit Exceeded in Transit
Fragment reassembly time exceeded

Parameter Problem
Erroneous header field encountered
Unrecognized Nect Header type encountered
Unrecognized IPv6 option encountered

Clearly, most of them parallel their ICMP counter-parts

ICMPv6 hard errors

Some implementation could potentially extrapolate the concept of
ICMP(v4) hard errors to ICMPv6 errors (for connections in the
synchronized states)
BSD-derived implementations don’t – Good! ;-)

ICMPv6 Packet Too Big

ICMPv6 PTB messages are used for Path-MTU discovery
The security implications of these messages are well-known (remember
draft-ietf-tcpm-icmp-attacks back in 2004?)
The mitigations are straightforward:

Check the embedded TCP SEQ and, even better, do not honor the ICMP PTB
if there’s progress on the connection (see draft-ietf-tcpm-icmp-attacks)

Anyway, the MTU should not be reduced to a value less than 1280. If a
smaller MTU is reported, the receiving node is just required to include a
frag header.
sysctl’s (OpenBSD)

net.inet6.icmp6.mtudisc_hiwat (defaults to 1280): Maximum
number of routes created in response to ICMP PTBs
net.inet6.icmp6.mtudisc_lowat (defaults to 256): Maximum
number of routes created in response to (unverified) ICMP PTBs

ICMPv6 redirects

ICMP redirects are very similar to the ICMP counterpart, except for:
The Hop Limit is required to be 255

ICMPv6 redirects are an optimization – hence they can be disabled with
no interoperability implications
Whether ICMPv6 are accepted is controlled in *BSD’s with the sysctl
net.inet6.icmp6.rediraccept. In OpenBSD, it defaults to 1 (on).

Node Information Query/Response

Specified in RFC 4620 as “Experimental”, but included (and enabled by
default) in KAME
Allows nodes to request certain network information about a node in a
server-less environment

Queries are sent with a target name or address (IPv4 or IPv6)
Queried information may include: node name, IPv4 addresses, or IPv6
addresses

Node Information Queries can be sent with the ping6 command (“-a” and
“-b” options)

Node Information Query/Response (II)

Response to Node Information Queries is controlled by the sysctl
net.inet6.icmp6.nodeinfo:

0: Do not respond to Node Information queries
1: Respond to FQDN queries (e.g., “ping6 –w”)
2: Respond to node addresses queries (e.g., “ping6 –a”)
3: Respond to all queries

net.inet6.icmp6.nodeinfo defaults to 1 in OpenBSD, and to 3 in
FreeBSD.
My take: unless you really need your nodes to support Node Information
messages, disable it (i.e., “sysctl –w net.inet6.icmp6-nodeinfo=0).

Address Resolution
(or “mapping from IPv6 to link-layer”)

Address Resolution

Employs the Neighbor Discovery Protocol (ICMPv6)
Every node maintains a “Neighbor Cache”, which contains the mappings
from IPv6 address to link-layer address, and the state (e.g., REACHABLE,
STALE, etc.) of each entry.
A node creates an entry in the Neighbor Cache for the target address (in
the INCOMPLETE state), and sends a Neighbor Solicitation to the
corresponding Solicited-node multicast address
The target node responds with a Neighbor Advertisement that includes
its link layer address
The node stores the link layer address information in the corresponding
Neighbor Cache Entry, and marks the entry as Reachable.
Reachability information for Neighbor Cache entries is updated based on
feedback received from the upper layer, or as a result of “probe” packets

Some Address Resolution games

Neighbor Cache Poisoning attacks – the v6 version of V4’s ARP cache
poisoning

The attacker simply listens to Neighbor Solicitations for Target addresses he
is interested in, and responds with Neighbor Advertisements that contain his
own link-layer address

Advertising “special” link-layer addresses, e.g.,
The broadcast Ethernet address (ff:ff:ff:ff:ff:ff)
Multicast Ethernet addresses (e.g., 33:33:00:00:01)
The link-layer address of the node sending the Neighbor Solicitation – this
introduces a forwarding loop if the victim is a router!
All BSD variants tested don’t check for these special addresses!

Not much support in layer-2 security boxes to mitigate these attacks
Open source tools do exist. E.g., NDPMon, available at:
http://ndpmon.sourceforge.net

sysctl’s for Neighbor Discovery (OpenBSD)

net.inet6.ip6.neighborgcthresh (defaults to 2048): Maximum
number of entries in the Neighbor Cache
net.inet6.icmp6.nd6_prune (defaults to 1): Interval between
Neighbor Cache babysitting (in seconds).
net.inet6.icmp6.nd6_delay (defaults to 5): specifies the
DELAY_FIRST_PROBE_TIME constant from RFC 4861.
net.inet6.icmp6.nd6_umaxtries (defaults to 3): specifies the
MAX_UNICAST_SOLICIT constant from RFC 4861
net.inet6.icmp6.nd6_mmaxtries (defaults to 3): specifies the
MAX_MULTICAST_SOLICIT constant from RFC 4861.
net.inet6.icmp6.nd6_useloopback (defaults to 1): If non-zero, uses
the loopback interface for local traffic.
net.inet6.icmp6.nd6_maxnudhint (defaults to 0): Maximum number
of upper-layer reachability hints before normal ND is performed.

Stateless address
autoconfiguration

(or “what we’re doing on v6 security”)

Auto-configuration

Employs the Neighbor Discovery Protocol (ICMPv6 messages) – DHCPv6
is optional.
Basic autoconfiguration

The node sends a multicast Router Solicitation message to the “all-routers”
Routers respond with prefixes for autoconfiguration
The node configures its own IPv6 address(es) with the advertised prefixes,
plus a locally-generated Interface ID
Checks whether the selected address(es) are unique (Duplicate Address
Detection)
If unique, the address is configured.

Address autoconfiguration flowchart

Other autoconf information

Source Link-Layer Address option: advertises the link-layer address of the
sender
Prefix Information option: advertises “on-link” prefixes, and prefixes to be
used for stateless address autoconfiguration.
Route Information Option: Advertises “more specific routes”.
Recursive DNS Server option: Advertises a “caching” DNS server
MTU option: Advertises the MTU to be used for this link

Some address autoconf games

Rogue router: an attacker could send solicited/unsolicited Router
Advertisements:

Advertise itself as a default router
Advertise bogus prefixes for on-link determination/autoconfiguration
Advertise more specific routes through his malicious node
Impersonate another router and cause victim nodes to remove it from their
routing table

Exploiting Duplicate Address Detection
Simply respond to all Neighbor Solicitations that are part of the DAD, and
cause address autoconfiguration to fail

Some (not all) of this vulnerabilities can be exploited with THC’s “IPv6
attack suite”

sysctl’s for autoconf (OpenBSD)

net.inet6.ip6.accept_rtadv (defaults to 1): Controls whether
Router Advertisements are accepted.
net.inet6.ip6.dad_count (defaults to 1): Number of DAD probes
sent when an interface is first brought up
net.inet6.ip6.maxifprefixes (defaults to 16): Maximum number of
prefixes per interface.
net.inet6.ip6.maxifdefrouters (defaults to 16): maximum number
fo default routers per interface.

Autoconf addresses & Privacy

Addresses selected as part of stateless autoconfiguration contain a
modified version of the MAC address of the interface
The MAC address is globally-unique, and non-changing (OUI assigned by
the IEEE to the vendor, plus a 3-byte number selected by the vendor)
There were concerns that autoconf addresses hurt privacy, as they could
be used to correlate network activity
Privacy addresses (RFC 4941) were introduced for that purpose

They basically set the Interface ID to a random number, and are short
They are short-lived
They tend to be painful for the purpose of logging

sysctl’s for Privacy Addresses

Privacy extensions for autoconf is implemented in FreeBSD (but not in,
e.g., OpenBSD)
These sysctl’s control their operation:

net.inet6.ip6.use_tempaddr (defaults to 0)
Controls whether Privacy addresses are configured

net.inet6.ip6.temppltime (defaults to 86400)
Specifies the “preferred lifetime” for privacy addresses

net.inet6.ip6.tempvltime (defaults to 604800)
Specifies the “valid lifetime” for privacy addresses

net.inet6.ip6.prefer_tempaddr (defaults to 0)
Controls whether privacy addresses are “preferred” (i.e., whether outgoing
“conections” should use privacy addresses)

Personal rant on IPv6 security
(or “what’s missing in the IPv6 arena?”)

Key areas in which further work is needed

IPv6 Resiliency
Implementations have not really been the target of attackers, yet
Only a handful of publicly available attack tools
Lots of vulnerabilities and bugs still to be discovered.

IPv6 support in security devices
IPv6 transport is not broadly supported in security devices (firewalls, IDS/IPS,
etc.)
This is key to be able enforce security policies comparable with the IPv4
counterparts

Education/Training
Pushing people to “Enable IPv6” point-and-click style is simply insane.
Training is needed for engineers, technicians, security personnel, etc., before
the IPv6 network is running.

Questions?

Acknowledgements

UK CPNI, for their continued support
BSDCan 2010 organizers, for their support to present at this conference

Fernando Gont
fernando@gont.com.ar

http://www.gont.com.ar

