Host Scanning in IPv6 Networks (draft-gont-opsec-ipv6-host-scanning)

Fernando Gont

IETF 84 Vancouver, Canada. July 29-August 3, 2012

Overview

- IPv6 address-scanning attacks have long been considered unfeasible
- This myth has been based on the assumption that:
 - IPv6 subnets are /64s, **and**,
 - Host addresses are "randomly" selected from that /64
- However, IPv6 address-scanning attacks have already been seen in the wild

draft-gont-opsec-ipv6-host-scanning

- Raises awareness about IPv6 address-scanning attacks
- Sheds some light on what the real search space is
- Explores a number of techniques for IPv6-address scanning
- Discusses possible mitigations to these attacks
- It is expected to explore other host-scanning techniques in detail (in future revisions) – in the TODO list!

IPv6 address scanning of remote networks

IPv6 addresses in the real world

 Malone measured (*) the address generation policy of hosts and routers in real networks

Address type	Percentage		Address type	Percentage		
SLAAC	50%		Low-byte	70%		
IPv4-based	20%		IPv4-based	5%		
Teredo	10%		SLAAC	1%		
Low-byte	8%		Wordy	<1%		
Privacy	6%		Privacy	<1%		
Wordy	<1%		Teredo	<1%		
Others	<1%		Others	<1%		
Hosts			Routers			

Malone, D., "Observations of IPv6 Addresses", Passive and Active Measurement Conference (PAM 2008, LNCS 4979), April 2008, http://www.maths.tcd.ie/~dwmalone/p/addr-pam08.pdf>.

IPv6 addresses embedding IEEE IDs

	24 bits	16	bits	I	24 bits
	IEEE OUI	FF	FE		Lower 24 bits of MAC
	Known or guessable	Kn	iown		Unknown

- In practice, the search space is at most $\sim 2^{23}$ bits **feasible!**
- The low-order 24-bits are not necessarily random:
 - An organization buys a large number of boxes
 - In that case, MAC addresses are usually consecutive
 - Consecutive MAC addresses are generally in use in geographicallyclose locations

IPv6 addresses embedding IEEE IDs (II)

- Virtualization technologies present an interesting case
- Virtual Box employs OUI 08:00:27 (search space: ~2²³)
- VMWare ESX employs:
 - Automatic MACs: OUI 00:05:59, and next 16 bits copied from the low order 16 bits of the host's IPv4 address (search space: ~2⁸)
 - Manually-configured MACs:OUI 00:50:56 and the rest in the range 0x000000-0x3fffff (search space: ~2²²)

IPv6 addresses embedding IPv4 addr.

- They simply embed an IPv4 address in the IID
 - e.g.: 2000:db8::192.168.0.1
- Search space: same as the IPv4 search space feasible!

IPv6 "low-byte" addresses

- The IID is set to all-zeros, except for the last byte
 - e.g.: 2000:db8::1
 - There are other variants..
- Search space: usually 2⁸ or 2¹⁶ feasible!

Possible mitigations

- Do not employ predictable Interface IDs
 - Replace traditional SLAAC addresses with draft-ietf-6man-stableprivacy-addresses
 - Manually-configured addresses should not result in "low-byte" addresses
 - etc.
- You may employ IPS'es large number of non-existent IPv6 addresses will be probed!

IPv6 address scanning of local networks

Overview

- Leverage IPv6 all-nodes link-local multicast address
- Employ multiple probe types:
 - Normal multicasted ICMPv6 echo requests (don't work for Windows)
 - Unrecognized options of type 10xxxxxx
- Combine learned IIDs with known prefixes to learn all addresses
- Technique implemented in the scan6 tool of SI6's IPv6 toolkit
 - Available at: http://www.si6networks.com/tools

Possible mitigations

- Do not respond to multicasted ICMPv6 echo requests
 - Currently implemented in Windows
- Multicasted IPv6 packets containing unsupported options of type 10xxxxx should not elicit ICMPv6 errors
 - See draft-gont-6man-ipv6-smurf-amplifier
- **However**, it's virtually impossible to mitigate IPv6 address scanning of local networks
 - Think about mDNS, etc.

Moving forward

• Adopt as wg item?

Fernando Gont fgont@si6networks.com

www.si6networks.com

