
Security Assessment of the
Transmission Control
Protocol (TCP)
(draft-ietf-tcpm-tcp-security-02.txt)

Fernando Gont
project carried out on behalf of

UK CPNI

80th IETF meeting, Prague, Czech Republic
March 27-April 1, 2011

Working Process

At the Anaheim IETF, a process was agreed upon to evaluate
the recommendations in this document.
The process aims to categorize each recommendation as:

Implementation issues
Operational issues
Wiggle room in the specification
Bug in the document
Bug in the specification

For each category, there is a clear way forward
The process can be summarized with a set of questions.

Process flow “chart”

Do we agree X is correct?
No: Bug in the document – remove.
Yes: CONTINUE

Implementation issue?
Yes: Document (as updated to RFC 2525)
No: CONTINUE

Operational (config) issue?
Yes: Is this a good default?

Yes: Recommend default config
No: Discuss as config option

No: CONTINUE

Process flow “chart” (cont.)

Wiggle room in the specification?
Yes: Discuss as valid exception between MAY/SHOULD
No: Does this warrant adding wiggle room?

Yes: Downgrade MUST to SHOULD
No: CONTINUE

Change the spec

Current version of the document

TCPM began to review some recommendations on the
mailing list and in Anaheim, but had difficulty since
recommendations weren't clearly identified from rationale
As agreed in Beijing IETF, version -02 is organized in
RFC1122-style: recommendations are now more easily
identified
Much text was replaced with references to existing RFCs
(more to come in this area)
Reviews are highly needed (a few people have signed up,
already)

Summary of recommendations

116. TCP and IP Interaction

315. TCP processing of ICMP

314. TCP Port scanning

013. Covert Channels

512. Information Leaking

511. Blind In-window attacks

410. TCP API

RecsSection

79. Congestion Control

18. Segment Reassembly

37. Buffer Management

16. Connection Termination

85. Connection Establishment

184. TCP Options

233. Header Fields

RecsSection

Technical Discussion

Acknowledgement number check

The Acknowledgement Number was required to be:
SEG.ACK <= SND.NXT

RFC 5961 [Ramaiah et al, 2010] proposed a stricter check:
SND.UNA - SND.MAX.WND <= SEG.ACK <= SND.NXT
If a segment does not pass this check, it should be dropped.

Specification issue:
TCP MUST check that, on segments that have the ACK bit set, the
Acknowledgment Number satisfies the expression: SND.UNA -
SND.MAX.WND <= SEG.ACK <= SND.NXT
If a TCP segment does not pass this check, the segment MUST be
dropped, and an ACK segment SHOULD be sent in response.

Acknowledgement number

Some stacks fail to set the Acknowledgement Number to
zero when the ACK bit is not set (e.g., SYN segments or RST
segments)
This may produce an information leakege
Implementation issue:

TCP SHOULD set the Acknowledgement Number to zero when sending a
TCP segment that does not have the ACK bit set (i.e., a SYN segment).

Urgent Pointer

Basic Principle:
TCP MUST check that: Segment.Size - Data Offset * 4 > 0
If a TCP segment with the URG bit set does not pass this check, it
MUST be silently dropped.

Implemetation issue:
For TCP segments that have the URG bit set to zero, sending the TCP
SHOULD set the Urgent Pointer to zero.

Basic Principle:
A receiving TCP MUST ignore the Urgent Pointer field of TCP
segments for which the URG bit is zero.

