Security Assessment of the Transmission Control Protocol (TCP) (draft-ietf-tcpm-tcp-security-02.txt)

Fernando Gont

project carried out on behalf of UK CPNI

80th IETF meeting, Prague, Czech Republic March 27-April 1, 2011

Working Process

- At the Anaheim IETF, a process was agreed upon to evaluate the recommendations in this document.
- The process aims to categorize each recommendation as:
 - Implementation issues
 - Operational issues
 - Wiggle room in the specification
 - Bug in the document
 - Bug in the specification
- For each category, there is a clear way forward
- The process can be summarized with a set of questions.

Process flow "chart"

- Do we agree X is correct?
 - □ No: Bug in the document remove.
 - Yes: CONTINUE
- Implementation issue?
 - Yes: Document (as updated to RFC 2525)
 - No: CONTINUE
- Operational (config) issue?
 - Yes: Is this a good default?
 - Yes: Recommend default config
 - No: Discuss as config option
 - □ No: CONTINUE

Process flow "chart" (cont.)

• Wiggle room in the specification?

- □ Yes: Discuss as valid exception between MAY/SHOULD
- □ No: Does this warrant adding wiggle room?
 - Yes: Downgrade MUST to SHOULD
 - No: CONTINUE
- Change the spec

Current version of the document

- TCPM began to review some recommendations on the mailing list and in Anaheim, but had difficulty since recommendations weren't clearly identified from rationale
- As agreed in Beijing IETF, version -02 is organized in RFC1122-style: recommendations are now more easily identified
- Much text was replaced with references to existing RFCs (more to come in this area)
- Reviews are highly needed (a few people have signed up, already)

Summary of recommendations

Section	# Recs	Section	# Recs
3. Header Fields	23	10. TCP API	4
4. TCP Options	18	11. Blind In-window attacks	5
5. Connection Establishment	8	12. Information Leaking	5
6. Connection Termination	1	13. Covert Channels	0
7. Buffer Management	3	14. TCP Port scanning	3
8. Segment Reassembly	1	15. TCP processing of ICMP	3
9. Congestion Control	7	16. TCP and IP Interaction	1

Technical Discussion

Acknowledgement number check

- The Acknowledgement Number was required to be:
 SEG.ACK <= SND.NXT
- RFC 5961 [Ramaiah et al, 2010] proposed a stricter check:
 - SND.UNA SND.MAX.WND <= SEG.ACK <= SND.NXT</p>
 - □ If a segment does not pass this check, it should be dropped.
- Specification issue:
 - TCP MUST check that, on segments that have the ACK bit set, the Acknowledgment Number satisfies the expression: SND.UNA -SND.MAX.WND <= SEG.ACK <= SND.NXT</p>
 - □ If a TCP segment does not pass this check, the segment MUST be dropped, and an ACK segment SHOULD be sent in response.

Acknowledgement number

- Some stacks fail to set the Acknowledgement Number to zero when the ACK bit is not set (e.g., SYN segments or RST segments)
- This may produce an information leakege
- Implementation issue:
 - TCP SHOULD set the Acknowledgement Number to zero when sending a TCP segment that does not have the ACK bit set (i.e., a SYN segment).

Urgent Pointer

Basic Principle:

- □ TCP MUST check that: Segment.Size Data Offset * 4 > 0
- If a TCP segment with the URG bit set does not pass this check, it MUST be silently dropped.

Implemetation issue:

- For TCP segments that have the URG bit set to zero, sending the TCP SHOULD set the Urgent Pointer to zero.
- Basic Principle:
 - A receiving TCP MUST ignore the Urgent Pointer field of TCP segments for which the URG bit is zero.