

On the implementation
of TCP urgent data
(draft-gont-tcpm-urgent-data)

Fernando Gont & A. Yourtchenko

73rd IETF meeting, November 16-21, 2008
Minneapolis, MN, USA

Problem statement (I) (where does the UP point to?)

 There was some ambiguity in RFC 793 with respect to the
semantics of the TCP urgent pointer
 UP points to the byte following the last byte of urgent data?
 UP points to the last byte of urgent data?

 RFC 1122 clarified this ambiguity
 “the UP points to the last byte of urgent data”

 However, virtually every implementation interprets the semantics of
the UP as:
 “the UP points to the byte following the last byte of urgent data”

 Result:
 there’s a difference between what the specs state and what’s

actually implemented

Problem statement (II) (OOB vs- in-line)

 RFC 793 explains that the UP simply represents a mark in the data
stream where urgent data ends.

 Generally (but not actually specified in the RFCs), applications
would skip (discard) all those data before the urgent mark. But all
data would be in-band…

 However, virtually all stacks implement urgent data as follows:
 The UP points to the byte following the last byte of urgent data
 There can be only a single byte of urgent data at any time

 By default, this “single byte of urgent data” is typically delivered out-
of-band, by means of the recv(2) call with the MSG_OOB flag

 Some implementations (e.g., BSD-derived) have a single byte for
buffering urgent data. If you receive to urgent indications, the first
byte is lot. Other implementations (Microsoft?) queue OOB data!

Problem statement (III) (let’s make things worse)

 Some middle-boxes (e.g. Cisco PIX) clear the URG bit and set the
Urgent Pointer to zero by default.

 This means that any application that currently depends on TCP
urgent data may break.

What should we do about it?
 There are two different areas of work:

 UP semantics
 OOB vs. in-line processing of urgent data

What should we do about the UP? (I)
 Possible ways forward for UP semantics:

 Do nothing: this would make the specs irrelevant with respect to
urgent data

 Aim at having stacks implement the RFC 1122 semantics:
This would break any app that is currently using urgent data

 Update RFC 1122 to accomodate what implementations
have been doing: this would make the specs with what real
implementations do

What should we do about the UP? (II)
 Let’s be pragmatic:

 However, we are in a situation in which the specifications and
real implementations differ

 We’d like to do RFC 1122, but if we tried to push the RFC 1122
semantics at this point in time, we’d probably break any
application making use of urgent data.

 So the question we should proably ask ourselves at this point is:
as long as all implementations are consistent with how they send
and how they receive urgent data, does it actually matter
whether the UP points to the last byte of urgent data vs. the byte
following the last byte of urgent data?

 If the answer to this question is “No”, then the way to go would
be to update RFC 1122 in this respect to change the semantics
of the UP.

What should we do about in-line vs. OOB? (I

 Possible ways forward for OOB vs. in-line processing of urgent data
 Do nothing: apps would continue working, but with a broken

semantics for the TCP urgent data
 Recommend apps to set the SO_OOBINLINE, so that urgent

data is processed in-line: apps would continue working, but
they could migrate to the correct semantics of TCP urgent data.

 Deprecate urgent data: might make sense, as some middle-
boxes already break urgent data, but….

Moving forward
 We’re planning to publish a revision (-01) of the urgent data draft

that incorporates the feedback we got mainly from David Borman
on-list, and a really fruitful discussion (today!) with David Borman
and Joe Touch

 We believe that TCPM WG should do something about urgent data
 Should this document be adopted as a TCPM WG item?

